Spaces:
Sleeping
Sleeping
File size: 26,895 Bytes
8dadc91 68283c7 8dadc91 cab221e b10473a 5b66564 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 5b66564 cab221e 5b66564 cab221e 8dadc91 cab221e 5b66564 cab221e 5b66564 cab221e 5b66564 cab221e 5b66564 cab221e 5b66564 cab221e 5b66564 cab221e 5b66564 cab221e 8dadc91 5b66564 cab221e 8dadc91 cab221e 5b66564 8dadc91 5b66564 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 5b66564 3121c5d d51ec77 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 5b66564 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 cab221e 8dadc91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
import streamlit as st
import chromadb
import logging
import sys
import json
import os
from dotenv import load_dotenv
from huggingface_hub import InferenceClient, hf_hub_download # Added for dataset download
import numpy as np
import time
from tqdm import tqdm
# Need datasets, pandas, sentence-transformers
from datasets import load_dataset, DatasetDict, Dataset
import pandas as pd
from sentence_transformers import SentenceTransformer
# Keep ChromaDB embedding function import only if needed elsewhere, otherwise remove
# import chromadb.utils.embedding_functions as embedding_functions
# --- Page Config (MUST BE FIRST Streamlit call) ---
st.set_page_config(layout="wide")
# ---
# --- Configuration ---
# DB_PATH = "./chroma_db" # No longer using persistent path for app runtime
COLLECTION_NAME = "libguides_content"
LOCAL_EMBEDDING_MODEL = 'BAAI/bge-m3' # Local model for QUERY embedding
HF_GENERATION_MODEL = "google/gemma-3-27b-it" # HF model for generation
HF_DATASET_ID = "Zwounds/Libguides_Embeddings" # Your HF Dataset ID
PARQUET_FILENAME = "libguides_embeddings.parquet" # Filename within the dataset
# INPUT_FILE = 'extracted_content.jsonl' # No longer needed for app runtime
# EMBEDDING_BATCH_SIZE = 100 # Batch size for adding docs to ChromaDB (now done during load)
ADD_BATCH_SIZE = 500 # Batch size for adding to in-memory Chroma
TOP_K = 10
INITIAL_N_RESULTS = 50
API_RETRY_DELAY = 2
MAX_NEW_TOKENS = 512
# ---
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', stream=sys.stderr)
# --- Load API Key and Initialize HF Generation Client ---
@st.cache_resource
def initialize_hf_client():
generation_client_instance = None
try:
load_dotenv()
HF_TOKEN = os.getenv('HF_TOKEN') or os.getenv('HUGGING_FACE_HUB_TOKEN')
if not HF_TOKEN:
logging.error("HF_TOKEN or HUGGING_FACE_HUB_TOKEN not found.")
st.error("π΄ Hugging Face Token not found. Please set it as a Space secret named HF_TOKEN or in the .env file.")
st.stop()
else:
generation_client_instance = InferenceClient(model=HF_GENERATION_MODEL, token=HF_TOKEN)
logging.info(f"Initialized HF Inference Client for generation ({HF_GENERATION_MODEL}).")
return generation_client_instance
except Exception as e:
logging.exception("Error initializing Hugging Face Inference Client for generation.")
st.error(f"π΄ Error initializing Hugging Face Inference Client: {e}")
st.stop()
return None
generation_client = initialize_hf_client()
# ---
# --- Load Local Embedding Model (for Queries) ---
@st.cache_resource
def load_local_embedding_model():
logging.info(f"Loading local embedding model for queries: {LOCAL_EMBEDDING_MODEL}")
try:
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
logging.info(f"Using device: {device}")
except ImportError:
device = 'cpu'
logging.info("Torch not found, using device: cpu")
try:
model = SentenceTransformer(LOCAL_EMBEDDING_MODEL, device=device, trust_remote_code=True)
logging.info("Local embedding model loaded successfully.")
return model
except Exception as e:
st.error(f"Failed to load local embedding model ({LOCAL_EMBEDDING_MODEL}): {e}")
logging.exception(f"Failed to load local embedding model: {e}")
st.stop()
return None
embedding_model = load_local_embedding_model()
# ---
# --- Load Data from HF Dataset and Populate In-Memory ChromaDB ---
@st.cache_resource
def load_data_and_setup_chroma():
# Ensure dependent resources are loaded first
if not generation_client or not embedding_model:
st.error("Required clients/models not initialized. Cannot proceed.")
# Potentially redundant with individual init checks, but safe
st.stop()
try:
logging.info(f"Loading dataset '{HF_DATASET_ID}' from Hugging Face Hub...")
# Download the specific parquet file from the dataset repo
try:
parquet_path = hf_hub_download(repo_id=HF_DATASET_ID, filename=PARQUET_FILENAME, repo_type='dataset')
logging.info(f"Downloaded dataset file to: {parquet_path}")
except Exception as download_e:
logging.error(f"Failed to download dataset file '{PARQUET_FILENAME}' from '{HF_DATASET_ID}': {download_e}")
st.error(f"Failed to download dataset '{HF_DATASET_ID}'. Check dataset ID, filename, and token permissions.")
st.stop()
logging.info(f"Loading Parquet file '{parquet_path}' into Pandas DataFrame...")
df = pd.read_parquet(parquet_path)
logging.info(f"Dataset loaded into DataFrame with shape: {df.shape}")
# Verify required columns
required_cols = ['id', 'document', 'embedding', 'metadata']
if not all(col in df.columns for col in required_cols):
st.error(f"Dataset Parquet file is missing required columns. Found: {df.columns}. Required: {required_cols}")
logging.error(f"Dataset Parquet file missing required columns. Found: {df.columns}")
st.stop()
# Ensure embeddings are lists of floats
logging.info("Ensuring embeddings are in list format...")
# Check if the first embedding is already a list of floats, otherwise convert
if not isinstance(df['embedding'].iloc[0], list) or not isinstance(df['embedding'].iloc[0][0], float):
df['embedding'] = df['embedding'].apply(lambda x: list(map(float, x)) if isinstance(x, (np.ndarray, list)) else None)
logging.info("Converted embeddings to list[float].")
else:
logging.info("Embeddings already seem to be in list[float] format.")
initial_rows = len(df)
df.dropna(subset=['embedding'], inplace=True) # Drop rows where embedding is None
if len(df) < initial_rows:
logging.warning(f"Dropped {initial_rows - len(df)} rows due to invalid embedding format.")
if df.empty:
st.error("No valid data loaded from the dataset after processing embeddings.")
logging.error("DataFrame empty after embedding processing.")
st.stop()
logging.info("Initializing in-memory ChromaDB client...")
chroma_client = chromadb.Client() # In-memory client
try:
chroma_client.delete_collection(name=COLLECTION_NAME)
logging.info(f"Deleted existing in-memory collection (if any): {COLLECTION_NAME}")
except: pass
logging.info(f"Creating in-memory collection: {COLLECTION_NAME}")
# Create collection WITHOUT embedding function
collection = chroma_client.create_collection(
name=COLLECTION_NAME,
metadata={"hnsw:space": "cosine"}
)
logging.info(f"Adding {len(df)} documents to in-memory ChromaDB in batches of {ADD_BATCH_SIZE}...")
start_time = time.time()
error_count = 0
num_batches = (len(df) + ADD_BATCH_SIZE - 1) // ADD_BATCH_SIZE
progress_bar = st.progress(0, text="Loading embeddings into memory...")
for i in range(num_batches):
start_idx = i * ADD_BATCH_SIZE
end_idx = start_idx + ADD_BATCH_SIZE
batch_df = df.iloc[start_idx:end_idx]
try:
# Convert metadata column if it contains dicts
metadatas_list = batch_df['metadata'].tolist()
if metadatas_list and isinstance(metadatas_list[0], dict):
pass # Already list of dicts
else:
# Attempt to parse if they are JSON strings, otherwise use empty dicts
parsed_metadatas = []
for item in metadatas_list:
try:
parsed = json.loads(item) if isinstance(item, str) else item
parsed_metadatas.append(parsed if isinstance(parsed, dict) else {})
except:
parsed_metadatas.append({})
metadatas_list = parsed_metadatas # This line has the wrong indentation
# --- Clean None values from metadata ---
cleaned_metadatas = []
for meta_dict in metadatas_list:
cleaned_dict = {}
if isinstance(meta_dict, dict):
for key, value in meta_dict.items():
# Replace None with empty string, keep other valid types
if value is None:
cleaned_dict[key] = ""
elif isinstance(value, (str, int, float, bool)):
cleaned_dict[key] = value
else:
# Attempt to convert other types to string, or skip
try:
cleaned_dict[key] = str(value)
logging.warning(f"Converted unexpected metadata type ({type(value)}) to string for key '{key}'.")
except:
logging.warning(f"Skipping metadata key '{key}' with unconvertible type {type(value)}.")
cleaned_metadatas.append(cleaned_dict)
# -----------------------------------------
collection.add(
ids=batch_df['id'].tolist(),
embeddings=batch_df['embedding'].tolist(),
documents=batch_df['document'].tolist(),
metadatas=cleaned_metadatas # Use cleaned list
)
except Exception as e:
logging.error(f"Error adding batch {i+1}/{num_batches} to in-memory Chroma: {e}")
error_count += 1
progress_bar.progress((i + 1) / num_batches, text=f"Loading embeddings... Batch {i+1}/{num_batches}")
progress_bar.empty()
end_time = time.time()
logging.info(f"Finished loading data into in-memory ChromaDB. Took {end_time - start_time:.2f} seconds.")
if error_count > 0:
logging.warning(f"Encountered errors in {error_count} batches during add to Chroma.")
st.success("Embeddings loaded successfully!")
return collection
except ImportError as e:
st.error(f"ImportError: {e}. Required libraries might be missing (datasets, pandas, pyarrow). Check requirements.txt.")
logging.error(f"ImportError during dataset loading/Chroma setup: {e}")
st.stop()
except Exception as e:
st.error(f"Failed to load data and initialize ChromaDB: {e}")
logging.exception(f"An unexpected error occurred during data load/Chroma setup: {e}")
st.stop()
return None
# --- Load data and collection ---
collection = load_data_and_setup_chroma()
# ---
# --- Helper Functions ---
def query_hf_inference(prompt, client_instance=None, model_name=HF_GENERATION_MODEL):
"""Sends the prompt to the HF Inference API using the initialized client."""
if not client_instance:
client_instance = generation_client
if not client_instance:
logging.error("HF Inference client not initialized in query_hf_inference.")
return "Error: HF Inference client failed to initialize."
try:
response_text = client_instance.text_generation(prompt, max_new_tokens=MAX_NEW_TOKENS)
if not response_text:
logging.warning(f"Received empty response from HF Inference API ({model_name}) for prompt: {prompt[:100]}...")
return "Error: Received empty response from generation model."
return response_text.strip()
except Exception as e:
logging.exception(f"An unexpected error occurred while querying HF Inference API ({model_name}): {e}")
return f"Error: An unexpected error occurred while generating the answer using {model_name}."
def generate_query_variations(query, llm_func, model_name=HF_GENERATION_MODEL, num_variations=3):
"""Uses LLM (HF Inference API) to generate alternative phrasings."""
prompt = f"""Given the user query: "{query}"
Generate {num_variations} alternative phrasings or related queries someone might use to find the same information.
Focus on synonyms, different levels of specificity, and related concepts.
Return ONLY the generated queries, each on a new line, without any preamble or numbering.
Example Query: "who is the digital humanities liaison?"
Example Output:
digital scholarship librarian contact
staff directory digital humanities
Steve Zweibel digital humanities role
Example Query: "when are the next graduation dates?"
Example Output:
graduation deadlines academic calendar
dissertation deposit deadline
commencement schedule
User Query: "{query}"
Output:"""
logging.info(f"Generating query variations for: {query} using {model_name}")
try:
response = llm_func(prompt, model_name=model_name)
if response.startswith("Error:"):
logging.error(f"Query variation generation failed: {response}")
return []
variations = [line.strip() for line in response.split('\n') if line.strip()]
logging.info(f"Generated variations: {variations}")
return variations[:num_variations]
except Exception as e:
logging.error(f"Failed to generate query variations: {e}")
return []
def generate_prompt(query, context_chunks):
"""Generates a prompt for the LLM."""
context_str = "\n\n".join(context_chunks)
liaison_directory_url = "https://libguides.gc.cuny.edu/directory/subject"
prompt = f"""Based on the following context from the library guides, answer the user's question.
If the context doesn't contain the answer, state that you couldn't find the information in the guides.
If your answer identifies a specific librarian or subject liaison, please also include this link to the main subject liaison directory: {liaison_directory_url}
Context:
---
{context_str}
---
Question: {query}
Answer:"""
return prompt
# --- Streamlit App UI ---
st.title("π Ask the Library Guides (Dataset Embed + HF Gen)") # Updated title
# User input (only proceed if collection loaded)
if collection:
query = st.text_area("Enter your question:", height=100)
else:
# Error handled during load_data_and_setup_chroma
st.error("Application initialization failed. Cannot proceed.")
st.stop()
# --- Routing Prompt Definition ---
ROUTING_PROMPT_TEMPLATE = """You are a query routing assistant for a library chatbot. Your task is to classify the user's query into one of the following categories based on its intent:
Categories:
- RAG: The user is asking a general question about library services, policies, staff, or resources described in the library guides.
- HOURS: The user is asking about the library's opening or closing times, today's hours, or general operating hours.
- RESEARCH_QUERY: The user is asking for help starting research, finding databases/articles on a topic, or general research assistance.
- CATALOG_SEARCH: The user is asking if the library has a specific known item (book, journal title, article) or where to find it.
- ILL_REQUEST: The user is asking about Interlibrary Loan, requesting items not held by the library, or checking ILL status.
- ACCOUNT_INFO: The user is asking about their library account, fines, renewals, or logging in.
- TECH_SUPPORT: The user is reporting a problem with accessing resources, broken links, or other technical issues.
- EVENTS_CALENDAR: The user is asking about upcoming library events, workshops, or the events calendar.
Analyze the user's query below and determine the most appropriate category. Respond with ONLY the category name (RAG, HOURS, RESEARCH_QUERY, CATALOG_SEARCH, ILL_REQUEST, ACCOUNT_INFO, TECH_SUPPORT, or EVENTS_CALENDAR) and nothing else.
Examples:
Query: "who is the comp lit liaison?"
Response: RAG
Query: "how do I find articles on sociology?"
Response: RESEARCH_QUERY
Query: "when does the library close today?"
Response: HOURS
User Query: "{user_query}"
Response:"""
# --- Research Query Prompt Definition ---
RESEARCH_QUERY_PROMPT_TEMPLATE = """Based on the following context from the library guides, answer the user's research question.
1. Suggest 2-3 relevant databases or resources mentioned in the context that could help with their topic. If no specific databases are mentioned, suggest general multidisciplinary ones if appropriate based on the context.
2. Recommend contacting a subject librarian for further, more in-depth assistance.
3. Provide this link to the subject liaison directory: https://libguides.gc.cuny.edu/directory/subject
If the context doesn't seem relevant to the question, state that you couldn't find specific database recommendations in the guides but still recommend contacting a librarian using the provided directory link.
Context:
---
{context_str}
---
Question: {query}
Answer:"""
# --- End Prompt Definitions ---
# Only show button and process if collection is loaded
if collection and st.button("Ask"):
if not query:
st.warning("Please enter a question.")
else:
st.markdown("---")
with st.spinner("Routing query..."):
# --- LLM Routing Step ---
logging.info(f"Routing query: {query}")
routing_prompt = ROUTING_PROMPT_TEMPLATE.format(user_query=query)
try:
route_decision = query_hf_inference(routing_prompt).strip().upper()
logging.info(f"LLM (HF API) route decision: {route_decision}")
if route_decision.startswith("ERROR:"):
st.error(f"Routing failed: {route_decision}")
st.stop()
except Exception as e:
logging.error(f"LLM (HF API) routing failed: {e}. Defaulting to RAG.")
route_decision = "RAG"
# --- Handle specific routes ---
if route_decision == "HOURS":
st.info("You can find the current library hours here: [https://gc-cuny.libcal.com/hours](https://gc-cuny.libcal.com/hours)")
st.stop()
# ... (other routes) ...
elif route_decision == "EVENTS_CALENDAR":
events_url = "https://gc-cuny.libcal.com/calendar?cid=15537&t=d&d=0000-00-00&cal=15537&inc=0"
st.info(f"You can find information about upcoming library events and workshops on the calendar here: [{events_url}]({events_url})")
st.stop()
# --- End LLM Routing Step ---
spinner_text = "Thinking... (RAG)" if route_decision != "RESEARCH_QUERY" else "Thinking... (Research Query)"
with st.spinner(spinner_text):
# 1. Generate Query Variations (using HF API)
logging.info(f"Proceeding with retrieval for query (Route: {route_decision}): {query}")
query_variations = generate_query_variations(query, query_hf_inference, HF_GENERATION_MODEL)
all_queries = [query] + query_variations
logging.info(f"--- DIAGNOSTIC: All queries for search: {all_queries}")
# 2. Embed Queries Locally
try:
logging.info(f"Generating query embeddings locally using {LOCAL_EMBEDDING_MODEL}...")
query_embeddings = embedding_model.encode(all_queries).tolist()
logging.info(f"Generated {len(query_embeddings)} query embeddings locally.")
except Exception as e:
st.error(f"Failed to embed query using local model: {e}")
logging.exception(f"Failed to embed query using local model: {e}")
st.stop()
# 3. Vector Search (using pre-computed query embeddings)
vector_results_ids = []
context_chunks = []
context_metadata_list = []
try:
logging.info(f"Performing vector search for {len(query_embeddings)} embeddings...")
# Query ChromaDB using the computed query_embeddings
vector_results = collection.query(
query_embeddings=query_embeddings, # Pass embeddings now
n_results=INITIAL_N_RESULTS,
include=['documents', 'metadatas', 'distances']
)
# Process results (Combine results from variations)
vector_results_best_rank = {}
retrieved_docs_map = {}
retrieved_meta_map = {}
if vector_results and vector_results.get('ids') and any(vector_results['ids']):
total_vector_results = 0
for i, ids_list in enumerate(vector_results['ids']):
if ids_list:
total_vector_results += len(ids_list)
distances_list = vector_results['distances'][i] if vector_results.get('distances') else [float('inf')] * len(ids_list)
docs_list = vector_results['documents'][i] if vector_results.get('documents') else [""] * len(ids_list)
metas_list = vector_results['metadatas'][i] if vector_results.get('metadatas') else [{}] * len(ids_list)
for rank, doc_id in enumerate(ids_list):
distance = distances_list[rank]
if doc_id not in vector_results_best_rank or distance < vector_results_best_rank[doc_id]:
vector_results_best_rank[doc_id] = distance
retrieved_docs_map[doc_id] = docs_list[rank]
retrieved_meta_map[doc_id] = metas_list[rank]
logging.info(f"Vector search retrieved {total_vector_results} total results, {len(vector_results_best_rank)} unique IDs.")
else:
logging.warning("Vector search returned no results.")
# Rank unique results by distance
vector_ranked_ids_for_selection = sorted(vector_results_best_rank.items(), key=lambda item: item[1])
vector_results_ids_list = [doc_id for doc_id, distance in vector_ranked_ids_for_selection]
# --- Selection ---
final_context_ids = []
seen_texts_for_final = set()
ids_to_use_for_final_selection = vector_results_ids_list
logging.info(f"Selecting top {TOP_K} unique results from Vector Search list...")
for doc_id in ids_to_use_for_final_selection:
doc_text = retrieved_docs_map.get(doc_id)
if doc_text and doc_text not in seen_texts_for_final:
seen_texts_for_final.add(doc_text)
final_context_ids.append(doc_id)
if len(final_context_ids) >= TOP_K:
break
elif not doc_text:
logging.warning(f"Document text not found in map for ID {doc_id} during final selection.")
logging.info(f"Selected {len(final_context_ids)} final unique IDs after deduplication.")
# Get final context chunks and metadata
log_chunks = []
for i, doc_id in enumerate(final_context_ids):
chunk_text = retrieved_docs_map.get(doc_id)
chunk_meta = retrieved_meta_map.get(doc_id)
if chunk_text:
context_chunks.append(chunk_text)
context_metadata_list.append(chunk_meta if chunk_meta else {})
log_chunks.append(f"Chunk {i+1} (ID: {doc_id}): '{chunk_text[:70]}...'")
logging.info(f"Selected {len(context_chunks)} unique context chunks for LLM.")
if log_chunks:
logging.info(f"--- DIAGNOSTIC: Final Context Chunks Sent to LLM:\n" + "\n".join(log_chunks))
except Exception as e:
st.error(f"An error occurred during vector search/selection: {e}")
logging.exception("Vector search/selection failed.")
context_chunks = []
# 4. Generate Final Prompt based on Route
if route_decision == "RESEARCH_QUERY":
logging.info("Using RESEARCH_QUERY prompt template.")
final_prompt = RESEARCH_QUERY_PROMPT_TEMPLATE.format(context_str="\n\n".join(context_chunks), query=query)
else: # Default to standard RAG
logging.info("Using standard RAG prompt template.")
final_prompt = generate_prompt(query, context_chunks)
# 5. Query HF Inference API LLM
logging.info(f"Sending final prompt to HF Inference API model: {HF_GENERATION_MODEL}...")
answer = query_hf_inference(final_prompt)
logging.info(f"Received answer from HF Inference API: {answer[:100]}...")
if answer.startswith("Error:"):
st.error(f"Answer generation failed: {answer}")
# 6. Display results
st.subheader("Answer:")
st.markdown(answer)
st.markdown("---")
with st.expander("Retrieved Context"):
if context_chunks:
for i, (chunk, metadata) in enumerate(zip(context_chunks, context_metadata_list)):
st.markdown(f"**Chunk {i+1}:**")
st.text(chunk)
source_url = metadata.get('source_url')
if source_url:
st.markdown(f"Source: [{source_url}]({source_url})")
st.markdown("---")
else:
st.info("No specific context was retrieved from the guides to answer this question.")
# Add instructions or footer
st.sidebar.header("How to Use")
st.sidebar.info(
"1. Ensure your `HUGGING_FACE_HUB_TOKEN` is correctly set as a Space secret (`HF_TOKEN`) or in the `.env` file.\n"
f"2. The app will load pre-computed embeddings from the HF Dataset (`{HF_DATASET_ID}`).\n"
" (Ensure the dataset was created correctly using `export_chroma_to_parquet.py` and `upload_dataset_to_hf.py`)\n"
"3. Enter your question in the text area.\n"
"4. Click 'Ask'."
)
st.sidebar.header("Configuration")
st.sidebar.markdown(f"**Embedding:** Pre-computed (`{LOCAL_EMBEDDING_MODEL}` loaded from HF Dataset)")
st.sidebar.markdown(f"**LLM (HF API):** `{HF_GENERATION_MODEL}`")
st.sidebar.markdown(f"**ChromaDB Collection:** `{COLLECTION_NAME}` (In-Memory)")
st.sidebar.markdown(f"**Retrieval Mode:** Vector Search Only")
st.sidebar.markdown(f"**Final Unique Chunks:** `{TOP_K}` (from initial `{INITIAL_N_RESULTS}` vector search)")
|