File size: 1,775 Bytes
a2a33f3
 
 
 
d58ae22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2a33f3
 
 
 
 
 
 
 
 
 
 
 
d58ae22
 
a2a33f3
d58ae22
 
a2a33f3
 
 
d58ae22
a2a33f3
d58ae22
a2a33f3
d58ae22
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
from torch.utils.data import DataLoader


def update_baseline(actor, baseline, validation_set, record_scores=None, batch_size=100, threshold=0.95):
    """
    Evaluate the actor on the validation set and update the baseline if performance improves.
    
    Parameters:
    - actor: current model being trained
    - baseline: model used as the performance reference
    - validation_set: dataset used for evaluation
    - record_scores: previously recorded baseline scores
    - batch_size: batch size for validation
    - threshold: (optional) threshold for improvement (not used in current implementation)
    
    Returns:
    - updated record_scores
    """

    val_dataloader = DataLoader(dataset=validation_set,
                                batch_size=batch_size,
                                collate_fn=validation_set.collate)

    actor.greedy_search()
    actor.eval()

    actor_scores = []
    for batch in val_dataloader:
        with torch.no_grad():
            actor_output = actor(batch)
            actor_cost = actor_output['total_time'].view(-1)
            actor_scores.append(actor_cost)

    actor_scores = torch.cat(actor_scores, dim=0)
    actor_score_mean = actor_scores.mean().item()

    if record_scores is None:
        baseline.load_state_dict(actor.state_dict())
        return actor_scores

    baseline_score_mean = record_scores.mean().item()

    if actor_score_mean < baseline_score_mean:
        print(f"\nBaseline updated: {baseline_score_mean:.4f}{actor_score_mean:.4f}\n", flush=True)
        baseline.load_state_dict(actor.state_dict())
        return actor_scores
    else:
        print(f"\nNo improvement: {actor_score_mean:.4f}{baseline_score_mean:.4f}\n", flush=True)
        return record_scores