Update train_test_utils/baseline.py
Browse files- train_test_utils/baseline.py +28 -19
train_test_utils/baseline.py
CHANGED
@@ -1,10 +1,22 @@
|
|
1 |
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from torch.nn.utils import clip_grad_norm_
|
4 |
from torch.utils.data import DataLoader
|
5 |
|
6 |
|
7 |
-
def update_baseline(actor, baseline, validation_set, record_scores, batch_size=100, threshold=0.95):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
val_dataloader = DataLoader(dataset=validation_set,
|
10 |
batch_size=batch_size,
|
@@ -17,25 +29,22 @@ def update_baseline(actor, baseline, validation_set, record_scores, batch_size=1
|
|
17 |
for batch in val_dataloader:
|
18 |
with torch.no_grad():
|
19 |
actor_output = actor(batch)
|
20 |
-
actor_cost = actor_output['total_time']
|
21 |
-
|
22 |
-
actor_scores.append(actor_cost)
|
23 |
-
actor_scores = torch.cat(actor_scores, dim=0)
|
24 |
|
|
|
|
|
25 |
|
26 |
if record_scores is None:
|
27 |
baseline.load_state_dict(actor.state_dict())
|
28 |
-
|
29 |
-
return record_scores
|
30 |
-
else:
|
31 |
|
32 |
-
|
33 |
-
print('\n', flush=True)
|
34 |
-
print('baseline updated', flush=True)
|
35 |
-
print('\n', flush=True)
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
1 |
import torch
|
|
|
|
|
2 |
from torch.utils.data import DataLoader
|
3 |
|
4 |
|
5 |
+
def update_baseline(actor, baseline, validation_set, record_scores=None, batch_size=100, threshold=0.95):
|
6 |
+
"""
|
7 |
+
Evaluate the actor on the validation set and update the baseline if performance improves.
|
8 |
+
|
9 |
+
Parameters:
|
10 |
+
- actor: current model being trained
|
11 |
+
- baseline: model used as the performance reference
|
12 |
+
- validation_set: dataset used for evaluation
|
13 |
+
- record_scores: previously recorded baseline scores
|
14 |
+
- batch_size: batch size for validation
|
15 |
+
- threshold: (optional) threshold for improvement (not used in current implementation)
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
- updated record_scores
|
19 |
+
"""
|
20 |
|
21 |
val_dataloader = DataLoader(dataset=validation_set,
|
22 |
batch_size=batch_size,
|
|
|
29 |
for batch in val_dataloader:
|
30 |
with torch.no_grad():
|
31 |
actor_output = actor(batch)
|
32 |
+
actor_cost = actor_output['total_time'].view(-1)
|
33 |
+
actor_scores.append(actor_cost)
|
|
|
|
|
34 |
|
35 |
+
actor_scores = torch.cat(actor_scores, dim=0)
|
36 |
+
actor_score_mean = actor_scores.mean().item()
|
37 |
|
38 |
if record_scores is None:
|
39 |
baseline.load_state_dict(actor.state_dict())
|
40 |
+
return actor_scores
|
|
|
|
|
41 |
|
42 |
+
baseline_score_mean = record_scores.mean().item()
|
|
|
|
|
|
|
43 |
|
44 |
+
if actor_score_mean < baseline_score_mean:
|
45 |
+
print(f"\nBaseline updated: {baseline_score_mean:.4f} → {actor_score_mean:.4f}\n", flush=True)
|
46 |
+
baseline.load_state_dict(actor.state_dict())
|
47 |
+
return actor_scores
|
48 |
+
else:
|
49 |
+
print(f"\nNo improvement: {actor_score_mean:.4f} ≥ {baseline_score_mean:.4f}\n", flush=True)
|
50 |
+
return record_scores
|