Update train_test_utils/train.py
Browse files- train_test_utils/train.py +8 -16
train_test_utils/train.py
CHANGED
@@ -1,14 +1,10 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
from torch.nn.utils import clip_grad_norm_
|
4 |
-
from torch.utils.data import DataLoader
|
5 |
from just_time_windows.Actor.actor import Actor
|
6 |
|
7 |
|
8 |
-
|
9 |
-
|
10 |
def train_batch(actor, baseline, batch, optimizer, gradient_clipping=True, comparison_model=None, compute_cost_ratio=True):
|
11 |
-
|
12 |
device = actor.device
|
13 |
|
14 |
actor.train_mode()
|
@@ -16,7 +12,6 @@ def train_batch(actor, baseline, batch, optimizer, gradient_clipping=True, compa
|
|
16 |
actor_output = actor(batch)
|
17 |
actor_cost, log_probs = actor_output['total_time'], actor_output['log_probs']
|
18 |
|
19 |
-
|
20 |
with torch.no_grad():
|
21 |
baseline.greedy_search()
|
22 |
baseline_output = baseline(batch)
|
@@ -29,19 +24,17 @@ def train_batch(actor, baseline, batch, optimizer, gradient_clipping=True, compa
|
|
29 |
|
30 |
if gradient_clipping:
|
31 |
for group in optimizer.param_groups:
|
32 |
-
|
33 |
-
|
34 |
-
1,
|
35 |
-
norm_type=2
|
36 |
-
)
|
37 |
|
38 |
optimizer.step()
|
39 |
|
40 |
-
if compute_cost_ratio and (comparison_model is None):
|
41 |
-
normalize = actor.apply_normalization
|
42 |
-
comparison_model = Actor(model=None, num_neighbors_action=1, normalize=normalize, device=device)
|
43 |
-
|
44 |
if compute_cost_ratio:
|
|
|
|
|
|
|
|
|
45 |
with torch.no_grad():
|
46 |
comp_output = comparison_model(batch)
|
47 |
comp_cost = comp_output['total_time']
|
@@ -49,6 +42,5 @@ def train_batch(actor, baseline, batch, optimizer, gradient_clipping=True, compa
|
|
49 |
a = comp_cost.sum().item()
|
50 |
b = actor_cost.sum().item()
|
51 |
return b / a
|
52 |
-
else:
|
53 |
-
return None
|
54 |
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
from torch.nn.utils import clip_grad_norm_
|
|
|
4 |
from just_time_windows.Actor.actor import Actor
|
5 |
|
6 |
|
|
|
|
|
7 |
def train_batch(actor, baseline, batch, optimizer, gradient_clipping=True, comparison_model=None, compute_cost_ratio=True):
|
|
|
8 |
device = actor.device
|
9 |
|
10 |
actor.train_mode()
|
|
|
12 |
actor_output = actor(batch)
|
13 |
actor_cost, log_probs = actor_output['total_time'], actor_output['log_probs']
|
14 |
|
|
|
15 |
with torch.no_grad():
|
16 |
baseline.greedy_search()
|
17 |
baseline_output = baseline(batch)
|
|
|
24 |
|
25 |
if gradient_clipping:
|
26 |
for group in optimizer.param_groups:
|
27 |
+
params = [p for p in group['params'] if p.grad is not None]
|
28 |
+
if params:
|
29 |
+
clip_grad_norm_(params, max_norm=1, norm_type=2)
|
|
|
|
|
30 |
|
31 |
optimizer.step()
|
32 |
|
|
|
|
|
|
|
|
|
33 |
if compute_cost_ratio:
|
34 |
+
if comparison_model is None:
|
35 |
+
normalize = actor.apply_normalization
|
36 |
+
comparison_model = Actor(model=None, num_neighbors_action=1, normalize=normalize, device=device)
|
37 |
+
|
38 |
with torch.no_grad():
|
39 |
comp_output = comparison_model(batch)
|
40 |
comp_cost = comp_output['total_time']
|
|
|
42 |
a = comp_cost.sum().item()
|
43 |
b = actor_cost.sum().item()
|
44 |
return b / a
|
|
|
|
|
45 |
|
46 |
+
return None
|