|
import torch |
|
import torch.nn.functional as F |
|
from torch.utils.data import Dataset |
|
from sklearn.decomposition import TruncatedSVD |
|
import numpy as np |
|
from random import shuffle |
|
import os |
|
import pandas as pd |
|
|
|
class VRP_Dataset(Dataset): |
|
|
|
def __init__(self, dataset_size, num_nodes, num_depots, dataset_path, device='cpu', *args, **kwargs): |
|
super().__init__() |
|
|
|
self.device = device |
|
self.dataset_size = dataset_size |
|
self.num_nodes = num_nodes |
|
self.num_depots = num_depots |
|
|
|
|
|
raw_data = pd.read_csv(dataset_path) |
|
if len(raw_data) < dataset_size: |
|
raise ValueError("Dataset size requested exceeds available data") |
|
|
|
sampled_data = raw_data.sample(n=dataset_size, random_state=42).reset_index(drop=True) |
|
|
|
|
|
coords = torch.tensor(sampled_data[['longitude', 'latitude']].values, dtype=torch.float32) |
|
|
|
|
|
node_positions = coords.view(dataset_size, num_nodes, 2) |
|
self.node_positions = node_positions |
|
|
|
|
|
num_cars = num_nodes |
|
launch_time = torch.zeros(dataset_size, num_cars, 1) |
|
car_start_node = torch.randint(low=0, high=num_depots, size=(dataset_size, num_cars, 1)) |
|
self.fleet_data = { |
|
'start_time': launch_time, |
|
'car_start_node': car_start_node |
|
} |
|
|
|
|
|
a = torch.arange(num_nodes).reshape(1, 1, -1).repeat(dataset_size, num_cars, 1) |
|
b = car_start_node.repeat(1, 1, num_nodes) |
|
depot = ((a == b).sum(dim=1) > 0).float().unsqueeze(2) |
|
|
|
start_times = (torch.rand(dataset_size, num_nodes, 1) * 2 + 3) * (1 - depot) |
|
end_times = start_times + (0.1 + 0.5 * torch.rand(dataset_size, num_nodes, 1)) * (1 - depot) |
|
|
|
distance_matrix = self.compute_distance_matrix(node_positions) |
|
time_matrix = distance_matrix.clone() |
|
|
|
self.graph_data = { |
|
'start_times': start_times, |
|
'end_times': end_times, |
|
'depot': depot, |
|
'node_vector': node_positions, |
|
'distance_matrix': distance_matrix, |
|
'time_matrix': time_matrix |
|
} |
|
|
|
def compute_distance_matrix(self, node_positions): |
|
x = node_positions.unsqueeze(1).repeat(1, self.num_nodes, 1, 1) |
|
y = node_positions.unsqueeze(2).repeat(1, 1, self.num_nodes, 1) |
|
distance = (((x - y) ** 2).sum(dim=3)) ** 0.5 |
|
return distance |
|
|
|
def __getitem__(self, idx): |
|
A = {key: self.graph_data[key][idx].unsqueeze(0).to(self.device) for key in self.graph_data} |
|
B = {key: self.fleet_data[key][idx].unsqueeze(0).to(self.device) for key in self.fleet_data} |
|
return A, B |
|
|
|
def __len__(self): |
|
return self.dataset_size |
|
|
|
def collate(self, batch): |
|
graph_data = {key: torch.cat([item[0][key] for item in batch], dim=0) for key in self.graph_data} |
|
fleet_data = {key: torch.cat([item[1][key] for item in batch], dim=0) for key in self.fleet_data} |
|
return graph_data, fleet_data |
|
|
|
def get_batch(self, idx, batch_size=10): |
|
return self.collate([self.__getitem__(i) for i in range(idx, idx + batch_size)]) |
|
|
|
def get_data(self): |
|
return self.graph_data, self.fleet_data |
|
|
|
def model_input_length(self): |
|
return 3 + self.graph_data['node_vector'].shape[2] |
|
|
|
def save_data(self, fp): |
|
data = (self.graph_data, self.fleet_data) |
|
with open(fp, 'wb') as f: |
|
torch.save(data, f) |
|
|