Update google_solver/convert_data.py
Browse files- google_solver/convert_data.py +50 -30
google_solver/convert_data.py
CHANGED
@@ -1,57 +1,77 @@
|
|
1 |
-
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
|
5 |
|
6 |
def convert_tensor(x):
|
7 |
-
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
else:
|
12 |
-
return [list(x[i]) for i in range(x.shape[0])]
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
def make_time_windows(start_time, end_time):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
return torch.cat([start_time, end_time], dim=2)
|
18 |
|
19 |
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
start_times = graph_data['start_times']
|
26 |
end_times = graph_data['end_times']
|
27 |
-
|
28 |
distance_matrix = graph_data['distance_matrix']
|
29 |
time_matrix = graph_data['time_matrix']
|
30 |
-
|
31 |
time_windows = make_time_windows(start_times, end_times)
|
32 |
|
|
|
|
|
33 |
|
34 |
-
batch_size = distance_matrix.shape[0]
|
35 |
-
data = []
|
36 |
for i in range(batch_size):
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
time_mat = convert_tensor(time_mat)
|
46 |
-
windows = convert_tensor(windows)
|
47 |
-
|
48 |
|
49 |
-
|
50 |
-
'time_matrix': time_mat,
|
51 |
-
'time_windows': windows,
|
52 |
-
'depot': 0,
|
53 |
-
'num_vehicles': num_vehicles
|
54 |
-
}
|
55 |
|
56 |
-
|
57 |
-
return data
|
|
|
|
|
1 |
import torch
|
2 |
import numpy as np
|
3 |
|
4 |
|
5 |
def convert_tensor(x):
|
6 |
+
"""
|
7 |
+
Convert a PyTorch tensor to a nested Python list of integers.
|
8 |
|
9 |
+
Args:
|
10 |
+
x (torch.Tensor): Tensor to convert.
|
|
|
|
|
11 |
|
12 |
+
Returns:
|
13 |
+
list: Converted nested list.
|
14 |
+
"""
|
15 |
+
x = x.long().cpu().numpy().astype(int)
|
16 |
+
if x.ndim == 1:
|
17 |
+
return list(x)
|
18 |
+
return [list(row) for row in x]
|
19 |
|
20 |
|
21 |
def make_time_windows(start_time, end_time):
|
22 |
+
"""
|
23 |
+
Concatenate start and end time tensors to form time windows.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
start_time (torch.Tensor): Start times (B, N, 1)
|
27 |
+
end_time (torch.Tensor): End times (B, N, 1)
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
torch.Tensor: Time windows (B, N, 2)
|
31 |
+
"""
|
32 |
return torch.cat([start_time, end_time], dim=2)
|
33 |
|
34 |
|
35 |
+
def convert_data(input_data, scale_factor):
|
36 |
+
"""
|
37 |
+
Convert batched graph and fleet data to OR-Tools compatible format.
|
38 |
|
39 |
+
Args:
|
40 |
+
input_data (tuple): Tuple of (graph_data, fleet_data) as dictionaries.
|
41 |
+
scale_factor (float): Scaling factor to convert float to integer.
|
42 |
|
43 |
+
Returns:
|
44 |
+
list: List of dictionaries, one per batch item, containing:
|
45 |
+
- distance_matrix
|
46 |
+
- time_matrix
|
47 |
+
- time_windows
|
48 |
+
- depot index (default 0)
|
49 |
+
- num_vehicles
|
50 |
+
"""
|
51 |
+
graph_data, fleet_data = input_data
|
52 |
|
53 |
start_times = graph_data['start_times']
|
54 |
end_times = graph_data['end_times']
|
|
|
55 |
distance_matrix = graph_data['distance_matrix']
|
56 |
time_matrix = graph_data['time_matrix']
|
|
|
57 |
time_windows = make_time_windows(start_times, end_times)
|
58 |
|
59 |
+
batch_size = distance_matrix.size(0)
|
60 |
+
converted_data = []
|
61 |
|
|
|
|
|
62 |
for i in range(batch_size):
|
63 |
+
space_mat = (distance_matrix[i] * scale_factor)
|
64 |
+
time_mat = (time_matrix[i] * scale_factor)
|
65 |
+
windows = (time_windows[i] * scale_factor)
|
66 |
|
67 |
+
sample_dict = {
|
68 |
+
'distance_matrix': convert_tensor(space_mat),
|
69 |
+
'time_matrix': convert_tensor(time_mat),
|
70 |
+
'time_windows': convert_tensor(windows),
|
71 |
+
'depot': 0,
|
72 |
+
'num_vehicles': distance_matrix[i].shape[1] # assuming square matrix
|
73 |
+
}
|
|
|
|
|
|
|
74 |
|
75 |
+
converted_data.append(sample_dict)
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
return converted_data
|
|