Update train_test_utils/validation.py
Browse files- train_test_utils/validation.py +18 -12
train_test_utils/validation.py
CHANGED
@@ -1,24 +1,30 @@
|
|
1 |
-
|
2 |
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
from torch.nn.utils import clip_grad_norm_
|
5 |
from torch.utils.data import DataLoader
|
6 |
|
7 |
|
8 |
def validation(actor, validation_dataset, batch_size):
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
val_dataloader = DataLoader(dataset=validation_dataset,
|
11 |
batch_size=batch_size,
|
12 |
collate_fn=validation_dataset.collate)
|
13 |
|
14 |
scores = []
|
15 |
-
for batch in val_dataloader:
|
16 |
-
with torch.no_grad():
|
17 |
-
actor_output = actor(batch)
|
18 |
-
cost = actor_output['total_time']
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
|
24 |
-
return scores
|
|
|
|
|
1 |
import torch
|
|
|
|
|
2 |
from torch.utils.data import DataLoader
|
3 |
|
4 |
|
5 |
def validation(actor, validation_dataset, batch_size):
|
6 |
+
"""
|
7 |
+
Evaluate the actor model on the validation dataset.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
actor: Trained model to evaluate
|
11 |
+
validation_dataset: Dataset for validation
|
12 |
+
batch_size: Size of mini-batches used in evaluation
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
Tensor of total costs for each sample in the validation set
|
16 |
+
"""
|
17 |
+
actor.eval() # Set model to evaluation mode
|
18 |
val_dataloader = DataLoader(dataset=validation_dataset,
|
19 |
batch_size=batch_size,
|
20 |
collate_fn=validation_dataset.collate)
|
21 |
|
22 |
scores = []
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
with torch.no_grad():
|
25 |
+
for batch in val_dataloader:
|
26 |
+
actor_output = actor(batch)
|
27 |
+
cost = actor_output['total_time'].view(-1)
|
28 |
+
scores.append(cost)
|
29 |
|
30 |
+
return torch.cat(scores, dim=0)
|