Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import numpy as np | |
| import pandas as pd | |
| import matplotlib.pyplot as plt | |
| import seaborn as sns | |
| import time | |
| df = pd.read_csv('bank.csv') | |
| st.set_page_config(page_title='Real time dashboard', | |
| page_icon = 'β ',layout="wide") | |
| #DASHBOARD TITLE | |
| st.title('Real time dashbord analysis') | |
| #filtre sur le type de job | |
| job_filter = st.selectbox('select a job',pd.unique(df['job'])) | |
| df = df[df['job']== job_filter] | |
| #Creation d indicateurs | |
| avg_age = np.mean(df['age']) | |
| count_married = int(df[(df['marital'] == 'married')]['marital'].count()) | |
| balance = np.mean(df['balance']) | |
| kpi1,kpi2,kpi3= st.columns(3) | |
| kpi1.metric(label='Age β³',value=round(avg_age),delta=round(avg_age)) | |
| kpi2.metric(label='Married Count π', value=count_married, | |
| delta= round(count_married)) | |
| kpi3.metric(label='Balance οΌ',value=f'οΌ {round(balance,2)}', | |
| delta = round(balance/count_married)*100) | |
| #Graphiques | |
| col1,col2 = st.columns(2) | |
| with col1: | |
| st.markdown('### First chart') | |
| fig1 = plt.figure() | |
| sns.barplot(data=df,x='marital',y='age',palette='muted') | |
| st.pyplot(fig1) | |
| with col2: | |
| st.markdown('### Second chart') | |
| fig2 = plt.figure() | |
| sns.histplot(data=df,x='age',palette='muted') | |
| st.pyplot(fig2) | |
| st.markdown('### Detailed data view') | |
| st.dataframe(df) | |