Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import time | |
df = pd.read_csv('bank.csv') | |
st.set_page_config(page_title='Real time dashboard', | |
page_icon = 'β ',layout="wide") | |
#DASHBOARD TITLE | |
st.title('Real time dashbord analysis') | |
#filtre sur le type de job | |
job_filter = st.selectbox('select a job',pd.unique(df['job'])) | |
df = df[df['job']== job_filter] | |
#Creation d indicateurs | |
avg_age = np.mean(df['age']) | |
count_married = int(df[(df['marital'] == 'married')]['marital'].count()) | |
balance = np.mean(df['balance']) | |
kpi1,kpi2,kpi3= st.columns(3) | |
kpi1.metric(label='Age β³',value=round(avg_age),delta=round(avg_age)) | |
kpi2.metric(label='Married Count π', value=count_married, | |
delta= round(count_married)) | |
kpi3.metric(label='Balance οΌ',value=f'οΌ {round(balance,2)}', | |
delta = round(balance/count_married)*100) | |
#Graphiques | |
col1,col2 = st.columns(2) | |
with col1: | |
st.markdown('### First chart') | |
fig1 = plt.figure() | |
sns.barplot(data=df,x='marital',y='age',palette='muted') | |
st.pyplot(fig1) | |
with col2: | |
st.markdown('### Second chart') | |
fig2 = plt.figure() | |
sns.histplot(data=df,x='age',palette='muted') | |
st.pyplot(fig2) | |
st.markdown('### Detailed data view') | |
st.dataframe(df) | |