Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,1153 +1,311 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
-
import
|
4 |
-
import datetime
|
5 |
-
import random
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
7 |
import torch
|
8 |
import time
|
9 |
-
import warnings
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
# Enhanced CSS for beautiful design
|
15 |
-
beautiful_css = """
|
16 |
-
/* Import Google Fonts */
|
17 |
-
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
18 |
-
|
19 |
-
/* Global Styles */
|
20 |
.gradio-container {
|
21 |
-
max-width:
|
22 |
margin: 0 auto !important;
|
23 |
-
font-family: '
|
24 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
25 |
-
min-height: 100vh;
|
26 |
-
}
|
27 |
-
|
28 |
-
/* Header Styling */
|
29 |
-
.header-container {
|
30 |
-
background: rgba(255, 255, 255, 0.95);
|
31 |
-
backdrop-filter: blur(10px);
|
32 |
-
border-radius: 20px;
|
33 |
-
padding: 2rem;
|
34 |
-
margin: 1rem;
|
35 |
-
box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1);
|
36 |
-
border: 1px solid rgba(255, 255, 255, 0.2);
|
37 |
-
}
|
38 |
-
|
39 |
-
/* Main Content Cards */
|
40 |
-
.content-card {
|
41 |
-
background: rgba(255, 255, 255, 0.98);
|
42 |
-
backdrop-filter: blur(15px);
|
43 |
-
border-radius: 16px;
|
44 |
-
padding: 1.5rem;
|
45 |
-
margin: 0.5rem;
|
46 |
-
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.08);
|
47 |
-
border: 1px solid rgba(255, 255, 255, 0.3);
|
48 |
-
transition: all 0.3s ease;
|
49 |
-
}
|
50 |
-
|
51 |
-
.content-card:hover {
|
52 |
-
transform: translateY(-2px);
|
53 |
-
box-shadow: 0 15px 40px rgba(0, 0, 0, 0.12);
|
54 |
-
}
|
55 |
-
|
56 |
-
/* Status Indicators */
|
57 |
-
.status-success {
|
58 |
-
background: linear-gradient(135deg, #4CAF50, #45a049);
|
59 |
-
color: white;
|
60 |
-
padding: 12px 20px;
|
61 |
-
border-radius: 12px;
|
62 |
-
font-weight: 500;
|
63 |
-
box-shadow: 0 4px 15px rgba(76, 175, 80, 0.3);
|
64 |
-
border: none;
|
65 |
-
}
|
66 |
-
|
67 |
-
.status-warning {
|
68 |
-
background: linear-gradient(135deg, #FF9800, #F57C00);
|
69 |
-
color: white;
|
70 |
-
padding: 12px 20px;
|
71 |
-
border-radius: 12px;
|
72 |
-
font-weight: 500;
|
73 |
-
box-shadow: 0 4px 15px rgba(255, 152, 0, 0.3);
|
74 |
-
}
|
75 |
-
|
76 |
-
.status-error {
|
77 |
-
background: linear-gradient(135deg, #f44336, #d32f2f);
|
78 |
-
color: white;
|
79 |
-
padding: 12px 20px;
|
80 |
-
border-radius: 12px;
|
81 |
-
font-weight: 500;
|
82 |
-
box-shadow: 0 4px 15px rgba(244, 67, 54, 0.3);
|
83 |
}
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
border-radius: 20px;
|
91 |
-
font-weight: 600;
|
92 |
-
font-size: 0.9rem;
|
93 |
-
display: inline-block;
|
94 |
-
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3);
|
95 |
-
margin: 0.5rem 0;
|
96 |
}
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
background: linear-gradient(135deg, #dc3545, #c82333);
|
101 |
-
color: white;
|
102 |
-
padding: 4px 12px;
|
103 |
-
border-radius: 20px;
|
104 |
-
font-weight: 600;
|
105 |
-
font-size: 0.8rem;
|
106 |
-
display: inline-block;
|
107 |
-
box-shadow: 0 2px 8px rgba(220, 53, 69, 0.3);
|
108 |
-
}
|
109 |
-
|
110 |
-
.severity-high {
|
111 |
-
background: linear-gradient(135deg, #fd7e14, #e8680a);
|
112 |
-
color: white;
|
113 |
-
padding: 4px 12px;
|
114 |
-
border-radius: 20px;
|
115 |
-
font-weight: 600;
|
116 |
-
font-size: 0.8rem;
|
117 |
-
display: inline-block;
|
118 |
-
box-shadow: 0 2px 8px rgba(253, 126, 20, 0.3);
|
119 |
-
}
|
120 |
-
|
121 |
-
.severity-medium {
|
122 |
-
background: linear-gradient(135deg, #ffc107, #e0a800);
|
123 |
-
color: #212529;
|
124 |
-
padding: 4px 12px;
|
125 |
-
border-radius: 20px;
|
126 |
-
font-weight: 600;
|
127 |
-
font-size: 0.8rem;
|
128 |
-
display: inline-block;
|
129 |
-
box-shadow: 0 2px 8px rgba(255, 193, 7, 0.3);
|
130 |
}
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
background: linear-gradient(135deg, #667eea, #764ba2) !important;
|
135 |
border: none !important;
|
136 |
-
border-radius:
|
137 |
-
padding: 12px
|
|
|
138 |
font-weight: 600 !important;
|
139 |
-
font-size: 1rem !important;
|
140 |
-
transition: all 0.3s ease !important;
|
141 |
-
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.4) !important;
|
142 |
-
}
|
143 |
-
|
144 |
-
.primary-button:hover {
|
145 |
-
transform: translateY(-2px) !important;
|
146 |
-
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.5) !important;
|
147 |
-
}
|
148 |
-
|
149 |
-
.secondary-button {
|
150 |
-
background: linear-gradient(135deg, #6c757d, #5a6268) !important;
|
151 |
-
border: none !important;
|
152 |
-
border-radius: 12px !important;
|
153 |
-
padding: 10px 20px !important;
|
154 |
-
font-weight: 500 !important;
|
155 |
color: white !important;
|
156 |
-
transition: all 0.3s ease !important;
|
157 |
-
}
|
158 |
-
|
159 |
-
/* Input Styling */
|
160 |
-
.custom-input {
|
161 |
-
border-radius: 12px !important;
|
162 |
-
border: 2px solid #e9ecef !important;
|
163 |
-
padding: 12px !important;
|
164 |
-
transition: all 0.3s ease !important;
|
165 |
-
background: rgba(255, 255, 255, 0.9) !important;
|
166 |
-
}
|
167 |
-
|
168 |
-
.custom-input:focus {
|
169 |
-
border-color: #667eea !important;
|
170 |
-
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
|
171 |
-
}
|
172 |
-
|
173 |
-
/* Section Headers */
|
174 |
-
.section-header {
|
175 |
-
font-size: 1.5rem;
|
176 |
-
font-weight: 700;
|
177 |
-
color: #2d3436;
|
178 |
-
margin-bottom: 1rem;
|
179 |
-
padding-bottom: 0.5rem;
|
180 |
-
border-bottom: 3px solid #667eea;
|
181 |
-
display: flex;
|
182 |
-
align-items: center;
|
183 |
-
gap: 0.5rem;
|
184 |
-
}
|
185 |
-
|
186 |
-
/* Alert Timeline */
|
187 |
-
.timeline-item {
|
188 |
-
background: rgba(102, 126, 234, 0.05);
|
189 |
-
border-left: 4px solid #667eea;
|
190 |
-
padding: 1rem;
|
191 |
-
margin: 0.5rem 0;
|
192 |
-
border-radius: 0 8px 8px 0;
|
193 |
-
transition: all 0.3s ease;
|
194 |
}
|
195 |
|
196 |
-
.
|
197 |
-
background:
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
.analysis-container {
|
203 |
-
background: linear-gradient(135deg, #f8f9fa, #e9ecef);
|
204 |
-
border-radius: 16px;
|
205 |
-
padding: 1.5rem;
|
206 |
-
border: 1px solid #dee2e6;
|
207 |
-
box-shadow: inset 0 2px 10px rgba(0, 0, 0, 0.05);
|
208 |
-
}
|
209 |
-
|
210 |
-
/* Confidence Meter */
|
211 |
-
.confidence-meter {
|
212 |
-
height: 8px;
|
213 |
-
background: #e9ecef;
|
214 |
-
border-radius: 10px;
|
215 |
-
overflow: hidden;
|
216 |
-
margin: 0.5rem 0;
|
217 |
-
}
|
218 |
-
|
219 |
-
.confidence-fill {
|
220 |
-
height: 100%;
|
221 |
-
background: linear-gradient(90deg, #28a745, #20c997, #17a2b8);
|
222 |
-
border-radius: 10px;
|
223 |
-
transition: width 0.5s ease;
|
224 |
-
}
|
225 |
-
|
226 |
-
/* Responsive Design */
|
227 |
-
@media (max-width: 768px) {
|
228 |
-
.gradio-container {
|
229 |
-
padding: 0.5rem;
|
230 |
-
}
|
231 |
-
|
232 |
-
.content-card {
|
233 |
-
margin: 0.25rem;
|
234 |
-
padding: 1rem;
|
235 |
-
}
|
236 |
-
|
237 |
-
.section-header {
|
238 |
-
font-size: 1.25rem;
|
239 |
-
}
|
240 |
}
|
241 |
|
242 |
-
|
243 |
-
|
244 |
-
border:
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
animation: spin 1s linear infinite;
|
250 |
-
display: inline-block;
|
251 |
-
margin-right: 0.5rem;
|
252 |
-
}
|
253 |
-
|
254 |
-
@keyframes spin {
|
255 |
-
0% { transform: rotate(0deg); }
|
256 |
-
100% { transform: rotate(360deg); }
|
257 |
-
}
|
258 |
-
|
259 |
-
/* Alert Cards */
|
260 |
-
.alert-card {
|
261 |
-
background: white;
|
262 |
-
border-radius: 12px;
|
263 |
-
padding: 1.5rem;
|
264 |
-
margin: 0.5rem 0;
|
265 |
-
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
|
266 |
-
border-left: 5px solid #667eea;
|
267 |
-
transition: all 0.3s ease;
|
268 |
-
}
|
269 |
-
|
270 |
-
.alert-card:hover {
|
271 |
-
transform: translateY(-2px);
|
272 |
-
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.12);
|
273 |
-
}
|
274 |
-
|
275 |
-
/* Network Flow Visualization */
|
276 |
-
.network-flow {
|
277 |
-
display: flex;
|
278 |
-
align-items: center;
|
279 |
-
gap: 1rem;
|
280 |
-
padding: 1rem;
|
281 |
-
background: rgba(102, 126, 234, 0.05);
|
282 |
-
border-radius: 12px;
|
283 |
-
margin: 0.5rem 0;
|
284 |
-
}
|
285 |
-
|
286 |
-
.network-node {
|
287 |
-
background: #667eea;
|
288 |
-
color: white;
|
289 |
-
padding: 0.5rem 1rem;
|
290 |
-
border-radius: 8px;
|
291 |
-
font-weight: 500;
|
292 |
-
font-size: 0.9rem;
|
293 |
-
}
|
294 |
-
|
295 |
-
.network-arrow {
|
296 |
-
color: #667eea;
|
297 |
-
font-size: 1.5rem;
|
298 |
-
font-weight: bold;
|
299 |
-
}
|
300 |
-
|
301 |
-
/* MITRE ATT&CK Styling */
|
302 |
-
.mitre-tag {
|
303 |
-
background: linear-gradient(135deg, #e74c3c, #c0392b);
|
304 |
-
color: white;
|
305 |
-
padding: 6px 12px;
|
306 |
-
border-radius: 20px;
|
307 |
-
font-size: 0.85rem;
|
308 |
-
font-weight: 600;
|
309 |
-
display: inline-block;
|
310 |
-
box-shadow: 0 3px 10px rgba(231, 76, 60, 0.3);
|
311 |
-
}
|
312 |
-
|
313 |
-
/* Custom Scrollbar */
|
314 |
-
::-webkit-scrollbar {
|
315 |
-
width: 8px;
|
316 |
-
}
|
317 |
-
|
318 |
-
::-webkit-scrollbar-track {
|
319 |
-
background: #f1f1f1;
|
320 |
-
border-radius: 10px;
|
321 |
-
}
|
322 |
-
|
323 |
-
::-webkit-scrollbar-thumb {
|
324 |
-
background: linear-gradient(135deg, #667eea, #764ba2);
|
325 |
-
border-radius: 10px;
|
326 |
-
}
|
327 |
-
|
328 |
-
::-webkit-scrollbar-thumb:hover {
|
329 |
-
background: linear-gradient(135deg, #5a6fd8, #6a4c93);
|
330 |
-
}
|
331 |
-
|
332 |
-
/* Statistics Cards */
|
333 |
-
.stat-card {
|
334 |
-
background: white;
|
335 |
-
border-radius: 12px;
|
336 |
-
padding: 1.5rem;
|
337 |
-
text-align: center;
|
338 |
-
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
|
339 |
-
transition: all 0.3s ease;
|
340 |
-
border-top: 4px solid #667eea;
|
341 |
-
}
|
342 |
-
|
343 |
-
.stat-card:hover {
|
344 |
-
transform: translateY(-3px);
|
345 |
-
box-shadow: 0 8px 25px rgba(0, 0, 0, 0.12);
|
346 |
-
}
|
347 |
-
|
348 |
-
.stat-number {
|
349 |
-
font-size: 2rem;
|
350 |
-
font-weight: 700;
|
351 |
-
color: #667eea;
|
352 |
-
margin-bottom: 0.5rem;
|
353 |
-
}
|
354 |
-
|
355 |
-
.stat-label {
|
356 |
-
color: #6c757d;
|
357 |
-
font-weight: 500;
|
358 |
-
text-transform: uppercase;
|
359 |
-
font-size: 0.85rem;
|
360 |
-
letter-spacing: 0.5px;
|
361 |
}
|
362 |
"""
|
363 |
|
364 |
-
# Global
|
365 |
-
|
366 |
-
|
367 |
-
model_status = "🔄 Initializing..."
|
368 |
|
369 |
@spaces.GPU
|
370 |
-
def
|
371 |
-
"""
|
372 |
-
global
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
"torch_dtype": "auto",
|
380 |
-
"device_map": "auto",
|
381 |
-
"trust_remote_code": True,
|
382 |
-
"low_cpu_mem_usage": True,
|
383 |
-
"use_safetensors": True
|
384 |
-
}
|
385 |
-
},
|
386 |
-
{
|
387 |
-
"model_id": "openai/gpt-oss-20b",
|
388 |
-
"name": "GPT-OSS-20B (BF16)",
|
389 |
-
"config": {
|
390 |
-
"torch_dtype": torch.bfloat16,
|
391 |
-
"device_map": "auto",
|
392 |
-
"trust_remote_code": True,
|
393 |
-
"low_cpu_mem_usage": True
|
394 |
-
}
|
395 |
-
},
|
396 |
-
{
|
397 |
-
"model_id": "microsoft/DialoGPT-large",
|
398 |
-
"name": "DialoGPT-Large (Fallback)",
|
399 |
-
"config": {
|
400 |
-
"torch_dtype": torch.float16 if torch.cuda.is_available() else torch.float32,
|
401 |
-
"device_map": "auto" if torch.cuda.is_available() else None
|
402 |
-
}
|
403 |
-
}
|
404 |
]
|
405 |
|
406 |
-
|
407 |
-
|
408 |
-
for i, strategy in enumerate(strategies):
|
409 |
try:
|
410 |
-
|
411 |
-
config = strategy["config"]
|
412 |
-
name = strategy["name"]
|
413 |
|
414 |
-
|
415 |
-
|
416 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
417 |
-
model_id,
|
418 |
-
trust_remote_code=True,
|
419 |
-
use_fast=True
|
420 |
-
)
|
421 |
-
|
422 |
-
if tokenizer.pad_token is None:
|
423 |
-
tokenizer.pad_token = tokenizer.eos_token
|
424 |
-
|
425 |
-
model = AutoModelForCausalLM.from_pretrained(
|
426 |
-
model_id,
|
427 |
-
**config
|
428 |
-
)
|
429 |
-
|
430 |
-
# Test generation
|
431 |
-
test_messages = [{"role": "user", "content": "Test"}]
|
432 |
-
test_pipe = pipeline(
|
433 |
"text-generation",
|
434 |
-
model=
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
)
|
439 |
|
440 |
-
|
|
|
441 |
|
442 |
-
model_status = f"✅ {
|
443 |
-
|
|
|
444 |
|
445 |
except Exception as e:
|
446 |
-
print(f"❌
|
447 |
-
model, tokenizer = None, None
|
448 |
if torch.cuda.is_available():
|
449 |
torch.cuda.empty_cache()
|
450 |
continue
|
451 |
|
452 |
-
model_status = "⚠️ Using fallback
|
453 |
-
return
|
454 |
|
455 |
-
|
456 |
-
|
457 |
-
"
|
458 |
-
|
459 |
-
|
460 |
-
"
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
"source_ip": "192.168.1.100",
|
467 |
-
"destination_ip": "192.168.1.25",
|
468 |
-
"user": "corp\\john.doe",
|
469 |
-
"alert_type": "Suspicious Process Execution",
|
470 |
-
"severity": "High",
|
471 |
-
"description": "Unusual PowerShell execution with encoded commands detected",
|
472 |
-
"raw_log": "Process: powershell.exe -WindowStyle Hidden -enc ZXhlYyBjYWxjLmV4ZQ== Parent: winword.exe",
|
473 |
-
"threat_intel": "Base64 encoded PowerShell commonly used by APT29 (Cozy Bear) for initial access",
|
474 |
-
"mitre_tactic": "T1059.001 - PowerShell",
|
475 |
-
"confidence": 85
|
476 |
-
},
|
477 |
-
{
|
478 |
-
"id": "ALR-002",
|
479 |
-
"timestamp": "2025-08-10 14:35:12",
|
480 |
-
"source_ip": "192.168.1.100",
|
481 |
-
"destination_ip": "192.168.1.50",
|
482 |
-
"user": "corp\\john.doe",
|
483 |
-
"alert_type": "Credential Dumping Attempt",
|
484 |
-
"severity": "Critical",
|
485 |
-
"description": "LSASS memory access detected - possible credential harvesting",
|
486 |
-
"raw_log": "Process: rundll32.exe comsvcs.dll MiniDump [PID] lsass.dmp full",
|
487 |
-
"threat_intel": "LSASS dumping technique associated with credential theft operations",
|
488 |
-
"mitre_tactic": "T1003.001 - LSASS Memory",
|
489 |
-
"confidence": 92
|
490 |
-
},
|
491 |
-
{
|
492 |
-
"id": "ALR-003",
|
493 |
-
"timestamp": "2025-08-10 14:42:18",
|
494 |
-
"source_ip": "192.168.1.100",
|
495 |
-
"destination_ip": "10.0.0.15",
|
496 |
-
"user": "SYSTEM",
|
497 |
-
"alert_type": "Abnormal Network Connection",
|
498 |
-
"severity": "Medium",
|
499 |
-
"description": "Connection to unusual internal subnet using stolen credentials",
|
500 |
-
"raw_log": "TCP connection established to 10.0.0.15:445 from 192.168.1.100:51234",
|
501 |
-
"threat_intel": "SMB connections to sensitive subnets often indicate lateral movement",
|
502 |
-
"mitre_tactic": "T1021.002 - SMB/Windows Admin Shares",
|
503 |
-
"confidence": 78
|
504 |
-
}
|
505 |
-
]
|
506 |
-
},
|
507 |
-
"📧 Phishing Campaign": {
|
508 |
-
"description": "Email-based social engineering attack leading to credential theft and data exfiltration",
|
509 |
-
"severity": "High",
|
510 |
-
"icon": "📧",
|
511 |
-
"color": "#fd7e14",
|
512 |
-
"alerts": [
|
513 |
-
{
|
514 |
-
"id": "ALR-004",
|
515 |
-
"timestamp": "2025-08-10 09:15:30",
|
516 |
-
"source_ip": "203.0.113.50",
|
517 |
-
"destination_ip": "192.168.1.75",
|
518 |
-
"user": "corp\\sarah.wilson",
|
519 |
-
"alert_type": "Malicious Email Detected",
|
520 |
-
"severity": "High",
|
521 |
-
"description": "Suspicious email with credential harvesting link detected",
|
522 |
-
"raw_log": "From: [email protected] Subject: URGENT: Account Suspended - Verify Now",
|
523 |
-
"threat_intel": "Domain registered 48 hours ago, hosted on bulletproof hosting provider",
|
524 |
-
"mitre_tactic": "T1566.002 - Spearphishing Link",
|
525 |
-
"confidence": 88
|
526 |
-
},
|
527 |
-
{
|
528 |
-
"id": "ALR-005",
|
529 |
-
"timestamp": "2025-08-10 09:45:22",
|
530 |
-
"source_ip": "192.168.1.75",
|
531 |
-
"destination_ip": "203.0.113.50",
|
532 |
-
"user": "corp\\sarah.wilson",
|
533 |
-
"alert_type": "Credential Submission",
|
534 |
-
"severity": "Critical",
|
535 |
-
"description": "User credentials submitted to suspicious external site",
|
536 |
-
"raw_log": "HTTPS POST to https://203.0.113.50/login.php - Credentials: username=sarah.wilson&password=[REDACTED]",
|
537 |
-
"threat_intel": "IP address hosting multiple phishing kits targeting financial institutions",
|
538 |
-
"mitre_tactic": "T1056.003 - Web Portal Capture",
|
539 |
-
"confidence": 95
|
540 |
-
}
|
541 |
-
]
|
542 |
-
},
|
543 |
-
"🔒 Ransomware Attack": {
|
544 |
-
"description": "File encryption attack with ransom demand - likely REvil/Sodinokibi variant",
|
545 |
-
"severity": "Critical",
|
546 |
-
"icon": "🔒",
|
547 |
-
"color": "#dc3545",
|
548 |
-
"alerts": [
|
549 |
-
{
|
550 |
-
"id": "ALR-006",
|
551 |
-
"timestamp": "2025-08-10 16:20:10",
|
552 |
-
"source_ip": "192.168.1.85",
|
553 |
-
"destination_ip": "192.168.1.85",
|
554 |
-
"user": "corp\\admin.backup",
|
555 |
-
"alert_type": "Mass File Encryption",
|
556 |
-
"severity": "Critical",
|
557 |
-
"description": "Rapid file modifications detected across multiple directories",
|
558 |
-
"raw_log": "Files encrypted: 1,247 in C:\\Users\\Documents\\ Extensions changed to: .locked2025",
|
559 |
-
"threat_intel": "Encryption pattern and extension match REvil ransomware family signatures",
|
560 |
-
"mitre_tactic": "T1486 - Data Encrypted for Impact",
|
561 |
-
"confidence": 97
|
562 |
-
},
|
563 |
-
{
|
564 |
-
"id": "ALR-007",
|
565 |
-
"timestamp": "2025-08-10 16:25:33",
|
566 |
-
"source_ip": "192.168.1.85",
|
567 |
-
"destination_ip": "45.33.22.11",
|
568 |
-
"user": "SYSTEM",
|
569 |
-
"alert_type": "Command and Control Communication",
|
570 |
-
"severity": "High",
|
571 |
-
"description": "Encrypted communication to known ransomware C2 infrastructure",
|
572 |
-
"raw_log": "TLS 1.3 connection established to 45.33.22.11:8443 - Data exchanged: 2.3KB",
|
573 |
-
"threat_intel": "IP address previously associated with REvil ransomware C2 operations",
|
574 |
-
"mitre_tactic": "T1071.001 - Web Protocols",
|
575 |
-
"confidence": 91
|
576 |
-
}
|
577 |
-
]
|
578 |
-
}
|
579 |
-
}
|
580 |
|
581 |
-
|
582 |
-
"""Get CSS class for severity level"""
|
583 |
-
classes = {
|
584 |
-
"Critical": "severity-critical",
|
585 |
-
"High": "severity-high",
|
586 |
-
"Medium": "severity-medium",
|
587 |
-
"Low": "severity-low"
|
588 |
-
}
|
589 |
-
return classes.get(severity, "severity-medium")
|
590 |
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
<div class="confidence-fill" style="width: {confidence}%"></div>
|
596 |
-
</div>
|
597 |
-
<small style="color: #6c757d;">{confidence}% Confidence</small>
|
598 |
-
"""
|
599 |
|
600 |
-
|
601 |
-
def generate_analysis_safe(alert_data, analyst_level):
|
602 |
-
"""Generate analysis with safe error handling"""
|
603 |
|
604 |
-
if
|
605 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
606 |
|
607 |
-
|
608 |
-
|
|
|
|
|
609 |
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
|
616 |
-
|
|
|
617 |
|
618 |
-
|
|
|
|
|
|
|
|
|
619 |
|
620 |
-
|
621 |
-
Network: {alert_data['source_ip']} → {alert_data['destination_ip']}
|
622 |
-
User: {alert_data['user']}
|
623 |
-
Evidence: {alert_data['raw_log']}
|
624 |
-
Intel: {alert_data['threat_intel']}
|
625 |
-
MITRE: {alert_data['mitre_tactic']}
|
626 |
-
Confidence: {alert_data['confidence']}%
|
627 |
|
628 |
-
|
|
|
629 |
|
630 |
-
|
|
|
631 |
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
|
|
637 |
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
pipe = pipeline(
|
645 |
-
"text-generation",
|
646 |
-
model=model,
|
647 |
-
tokenizer=tokenizer,
|
648 |
-
torch_dtype="auto",
|
649 |
-
device_map="auto" if torch.cuda.is_available() else None
|
650 |
-
)
|
651 |
-
|
652 |
-
messages = [{"role": "user", "content": prompt}]
|
653 |
-
|
654 |
-
result = pipe(
|
655 |
-
messages,
|
656 |
-
max_new_tokens=400,
|
657 |
-
do_sample=True,
|
658 |
-
temperature=0.3,
|
659 |
-
top_p=0.9,
|
660 |
-
repetition_penalty=1.1,
|
661 |
-
pad_token_id=tokenizer.eos_token_id
|
662 |
-
)
|
663 |
-
|
664 |
-
analysis = result[0]["generated_text"][-1]["content"]
|
665 |
-
|
666 |
-
if len(analysis.strip()) < 50:
|
667 |
-
return get_beautiful_fallback(alert_data, analyst_level)
|
668 |
-
|
669 |
-
return f"""
|
670 |
-
<div class="analysis-container">
|
671 |
-
<div class="gpt-oss-badge">
|
672 |
-
🤖 OpenAI GPT-OSS-20B Analysis
|
673 |
-
</div>
|
674 |
-
<div style="margin-top: 1rem; line-height: 1.6;">
|
675 |
-
{analysis.strip()}
|
676 |
-
</div>
|
677 |
-
<div style="margin-top: 1rem; padding-top: 1rem; border-top: 1px solid #dee2e6; color: #6c757d; font-size: 0.9rem;">
|
678 |
-
⚡ Generated using GPT-OSS-20B • 21B parameters • 3.6B active per token
|
679 |
-
</div>
|
680 |
-
</div>
|
681 |
-
"""
|
682 |
-
|
683 |
-
except Exception as e:
|
684 |
-
print(f"Generation error: {e}")
|
685 |
-
return get_beautiful_fallback(alert_data, analyst_level)
|
686 |
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
confidence_meter = create_confidence_meter(alert_data['confidence'])
|
692 |
-
|
693 |
-
templates = {
|
694 |
-
"L1": f"""
|
695 |
-
<div class="alert-card">
|
696 |
-
<div class="section-header">
|
697 |
-
🚨 L1 SOC Triage Analysis
|
698 |
-
</div>
|
699 |
-
|
700 |
-
<div style="margin: 1rem 0;">
|
701 |
-
<span class="{severity_class}">{alert_data['severity']} Severity</span>
|
702 |
-
<span class="mitre-tag" style="margin-left: 0.5rem;">{alert_data['mitre_tactic']}</span>
|
703 |
-
</div>
|
704 |
-
|
705 |
-
<div class="network-flow">
|
706 |
-
<div class="network-node">{alert_data['source_ip']}</div>
|
707 |
-
<div class="network-arrow">→</div>
|
708 |
-
<div class="network-node">{alert_data['destination_ip']}</div>
|
709 |
-
</div>
|
710 |
-
|
711 |
-
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">⚡ Immediate Actions Required</h4>
|
712 |
-
<div style="background: #fff3cd; padding: 1rem; border-radius: 8px; border-left: 4px solid #ffc107;">
|
713 |
-
<strong>🔒 Containment:</strong> Isolate system {alert_data['source_ip']}<br>
|
714 |
-
<strong>👤 User Action:</strong> Disable account {alert_data['user']}<br>
|
715 |
-
<strong>🌐 Network:</strong> Block connections to {alert_data['destination_ip']}<br>
|
716 |
-
<strong>📝 Documentation:</strong> Preserve logs and evidence
|
717 |
-
</div>
|
718 |
-
|
719 |
-
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">📊 Threat Assessment</h4>
|
720 |
-
{confidence_meter}
|
721 |
-
|
722 |
-
<div style="background: #f8d7da; padding: 1rem; border-radius: 8px; border-left: 4px solid #dc3545; margin-top: 1rem;">
|
723 |
-
<strong>⬆️ Escalation Required:</strong> {alert_data['severity']} severity warrants L2 investigation
|
724 |
-
</div>
|
725 |
-
</div>
|
726 |
-
""",
|
727 |
|
728 |
-
|
729 |
-
|
730 |
-
<div class="section-header">
|
731 |
-
🔍 L2 Investigation Analysis
|
732 |
-
</div>
|
733 |
-
|
734 |
-
<div style="margin: 1rem 0;">
|
735 |
-
<span class="{severity_class}">{alert_data['severity']} Severity</span>
|
736 |
-
<span class="mitre-tag" style="margin-left: 0.5rem;">{alert_data['mitre_tactic']}</span>
|
737 |
-
</div>
|
738 |
-
|
739 |
-
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">🎯 Attack Vector Analysis</h4>
|
740 |
-
<div style="background: #e2e3e5; padding: 1rem; border-radius: 8px;">
|
741 |
-
<strong>Technique:</strong> {alert_data['mitre_tactic']}<br>
|
742 |
-
<strong>Evidence:</strong> {alert_data['raw_log']}<br>
|
743 |
-
<strong>Context:</strong> {alert_data['description']}
|
744 |
-
</div>
|
745 |
-
|
746 |
-
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">🔬 Investigation Roadmap</h4>
|
747 |
-
<div class="timeline-item">
|
748 |
-
<strong>1.</strong> Timeline correlation: ±30min window analysis
|
749 |
-
</div>
|
750 |
-
<div class="timeline-item">
|
751 |
-
<strong>2.</strong> User behavior baseline: {alert_data['user']} comparison
|
752 |
-
</div>
|
753 |
-
<div class="timeline-item">
|
754 |
-
<strong>3.</strong> Network flow analysis: {alert_data['source_ip']} → {alert_data['destination_ip']}
|
755 |
-
</div>
|
756 |
-
<div class="timeline-item">
|
757 |
-
<strong>4.</strong> Process tree examination and artifact collection
|
758 |
-
</div>
|
759 |
-
<div class="timeline-item">
|
760 |
-
<strong>5.</strong> Similar IOC hunting across environment
|
761 |
-
</div>
|
762 |
-
|
763 |
-
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">📊 Threat Intelligence</h4>
|
764 |
-
{confidence_meter}
|
765 |
-
<div style="background: #d1ecf1; padding: 1rem; border-radius: 8px; border-left: 4px solid #17a2b8; margin-top: 1rem;">
|
766 |
-
<strong>Attribution Context:</strong> {alert_data['threat_intel']}
|
767 |
-
</div>
|
768 |
-
</div>
|
769 |
-
""",
|
770 |
|
771 |
-
|
772 |
-
|
773 |
-
<div class="section-header">
|
774 |
-
🎯 L3 Expert Strategic Analysis
|
775 |
-
</div>
|
776 |
-
|
777 |
-
<div style="margin: 1rem 0;">
|
778 |
-
<span class="{severity_class}">{alert_data['severity']} Severity</span>
|
779 |
-
<span class="mitre-tag" style="margin-left: 0.5rem;">{alert_data['mitre_tactic']}</span>
|
780 |
-
</div>
|
781 |
-
|
782 |
-
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">🎭 Adversary Assessment</h4>
|
783 |
-
<div style="background: #f8d7da; padding: 1rem; border-radius: 8px;">
|
784 |
-
<strong>Sophistication:</strong> Advanced (based on {alert_data['mitre_tactic']})<br>
|
785 |
-
<strong>Campaign Context:</strong> {alert_data['threat_intel']}<br>
|
786 |
-
<strong>Success Probability:</strong> {alert_data['confidence']}%
|
787 |
-
</div>
|
788 |
-
|
789 |
-
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">💼 Business Impact</h4>
|
790 |
-
{confidence_meter}
|
791 |
-
<div style="background: #fff3cd; padding: 1rem; border-radius: 8px; margin-top: 1rem;">
|
792 |
-
<strong>🔴 Executive Notification:</strong> Required for {alert_data['severity']} severity<br>
|
793 |
-
<strong>📋 Regulatory Impact:</strong> Under compliance review<br>
|
794 |
-
<strong>⏰ Response Timeline:</strong> Immediate action required
|
795 |
-
</div>
|
796 |
-
|
797 |
-
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">🛡️ Strategic Response Plan</h4>
|
798 |
-
<div class="timeline-item" style="background: #d4edda;">
|
799 |
-
<strong>Immediate:</strong> Threat hunting deployment across infrastructure
|
800 |
-
</div>
|
801 |
-
<div class="timeline-item" style="background: #cce5ff;">
|
802 |
-
<strong>Short-term:</strong> Enhanced monitoring and detection rules
|
803 |
-
</div>
|
804 |
-
<div class="timeline-item" style="background: #e2e3e5;">
|
805 |
-
<strong>Medium-term:</strong> Security architecture review
|
806 |
-
</div>
|
807 |
-
<div class="timeline-item" style="background: #f8d7da;">
|
808 |
-
<strong>Long-term:</strong> Threat intelligence integration
|
809 |
-
</div>
|
810 |
-
</div>
|
811 |
-
"""
|
812 |
-
}
|
813 |
-
|
814 |
-
return templates.get(analyst_level, templates["L2"])
|
815 |
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
return "❌ Invalid scenario selected.", "", "Error: Invalid scenario"
|
822 |
-
|
823 |
-
scenario = ATTACK_SCENARIOS[scenario_name]
|
824 |
-
alerts = scenario["alerts"]
|
825 |
-
|
826 |
-
if alert_index >= len(alerts):
|
827 |
-
return "❌ Invalid alert index.", "", "Error: Invalid alert index"
|
828 |
-
|
829 |
-
selected_alert = alerts[alert_index]
|
830 |
-
|
831 |
-
# Generate analysis
|
832 |
-
analysis = generate_analysis_safe(selected_alert, analyst_level)
|
833 |
-
|
834 |
-
# Create beautiful alert details
|
835 |
-
severity_class = get_severity_class(selected_alert['severity'])
|
836 |
-
confidence_meter = create_confidence_meter(selected_alert['confidence'])
|
837 |
-
|
838 |
-
alert_details = f"""
|
839 |
-
<div class="alert-card">
|
840 |
-
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 1.5rem;">
|
841 |
-
<h3 style="margin: 0; color: #2d3436;">🎫 ALERT {selected_alert['id']}</h3>
|
842 |
-
<small style="color: #6c757d;">🕐 {selected_alert['timestamp']}</small>
|
843 |
-
</div>
|
844 |
-
|
845 |
-
<div class="network-flow" style="margin: 1rem 0;">
|
846 |
-
<div class="network-node">{selected_alert['source_ip']}</div>
|
847 |
-
<div class="network-arrow">→</div>
|
848 |
-
<div class="network-node">{selected_alert['destination_ip']}</div>
|
849 |
-
</div>
|
850 |
-
|
851 |
-
<div style="margin: 1rem 0;">
|
852 |
-
<strong>👤 User Account:</strong> {selected_alert['user']}<br>
|
853 |
-
<strong>🎯 Alert Type:</strong> {selected_alert['alert_type']}<br>
|
854 |
-
</div>
|
855 |
-
|
856 |
-
<div style="margin: 1.5rem 0;">
|
857 |
-
<span class="{severity_class}">{selected_alert['severity']}</span>
|
858 |
-
<span class="mitre-tag" style="margin-left: 0.5rem;">{selected_alert['mitre_tactic']}</span>
|
859 |
-
</div>
|
860 |
-
|
861 |
-
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">📝 Description</h4>
|
862 |
-
<div style="background: #f8f9fa; padding: 1rem; border-radius: 8px; border-left: 4px solid #6c757d;">
|
863 |
-
{selected_alert['description']}
|
864 |
-
</div>
|
865 |
-
|
866 |
-
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">🔍 Technical Evidence</h4>
|
867 |
-
<div style="background: #2d3436; color: #ffffff; padding: 1rem; border-radius: 8px; font-family: 'Courier New', monospace; font-size: 0.9rem; overflow-x: auto;">
|
868 |
-
{selected_alert['raw_log']}
|
869 |
-
</div>
|
870 |
-
|
871 |
-
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">🧠 Threat Intelligence</h4>
|
872 |
-
<div style="background: #d1ecf1; padding: 1rem; border-radius: 8px; border-left: 4px solid #17a2b8;">
|
873 |
-
{selected_alert['threat_intel']}
|
874 |
-
</div>
|
875 |
-
|
876 |
-
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">📊 Confidence Assessment</h4>
|
877 |
-
{confidence_meter}
|
878 |
-
</div>
|
879 |
-
"""
|
880 |
-
|
881 |
-
processing_time = round(time.time() - start_time, 2)
|
882 |
-
device_info = "GPU" if torch.cuda.is_available() else "CPU"
|
883 |
-
status = f"""
|
884 |
-
<div class="status-success">
|
885 |
-
✅ {analyst_level} analysis completed in {processing_time}s | Device: {device_info} | {model_status}
|
886 |
-
</div>
|
887 |
-
"""
|
888 |
-
|
889 |
-
return alert_details, analysis, status
|
890 |
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
<div style="margin: 1.5rem 0;">
|
903 |
-
<div class="stat-card" style="display: inline-block; margin-right: 1rem; min-width: 150px;">
|
904 |
-
<div class="stat-number">{len(scenario['alerts'])}</div>
|
905 |
-
<div class="stat-label">Security Events</div>
|
906 |
-
</div>
|
907 |
-
<span class="{get_severity_class(scenario['severity'])}" style="vertical-align: top;">
|
908 |
-
{scenario['severity']} Severity
|
909 |
-
</span>
|
910 |
-
</div>
|
911 |
-
|
912 |
-
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">📋 Scenario Description</h4>
|
913 |
-
<div style="background: #f8f9fa; padding: 1.5rem; border-radius: 12px; border-left: 5px solid {scenario.get('color', '#667eea')};">
|
914 |
-
{scenario['description']}
|
915 |
-
</div>
|
916 |
-
|
917 |
-
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">🔍 Alert Timeline</h4>
|
918 |
-
"""
|
919 |
-
|
920 |
-
for i, alert in enumerate(scenario['alerts']):
|
921 |
-
severity_class = get_severity_class(alert['severity'])
|
922 |
-
info += f"""
|
923 |
-
<div class="timeline-item" style="margin: 0.5rem 0;">
|
924 |
-
<div style="display: flex; justify-content: space-between; align-items: center;">
|
925 |
-
<div>
|
926 |
-
<strong>[{i+1}] {alert['timestamp']}</strong> - {alert['alert_type']}
|
927 |
-
</div>
|
928 |
-
<div>
|
929 |
-
<span class="{severity_class}" style="font-size: 0.7rem; padding: 2px 8px;">
|
930 |
-
{alert['severity']}
|
931 |
-
</span>
|
932 |
-
<span style="margin-left: 0.5rem; color: #6c757d; font-size: 0.8rem;">
|
933 |
-
{alert['confidence']}% confidence
|
934 |
-
</span>
|
935 |
-
</div>
|
936 |
-
</div>
|
937 |
-
</div>
|
938 |
-
"""
|
939 |
-
|
940 |
-
info += """
|
941 |
-
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">🤖 AI Analysis Capabilities</h4>
|
942 |
-
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 1rem; margin-top: 1rem;">
|
943 |
-
<div class="stat-card">
|
944 |
-
<div style="font-size: 1.5rem; margin-bottom: 0.5rem;">🧠</div>
|
945 |
-
<div class="stat-label">GPT-OSS-20B Reasoning</div>
|
946 |
-
</div>
|
947 |
-
<div class="stat-card">
|
948 |
-
<div style="font-size: 1.5rem; margin-bottom: 0.5rem;">⚡</div>
|
949 |
-
<div class="stat-label">Multi-Strategy Loading</div>
|
950 |
-
</div>
|
951 |
-
<div class="stat-card">
|
952 |
-
<div style="font-size: 1.5rem; margin-bottom: 0.5rem;">🛡️</div>
|
953 |
-
<div class="stat-label">Robust Error Handling</div>
|
954 |
-
</div>
|
955 |
-
<div class="stat-card">
|
956 |
-
<div style="font-size: 1.5rem; margin-bottom: 0.5rem;">🎯</div>
|
957 |
-
<div class="stat-label">Expert Templates</div>
|
958 |
-
</div>
|
959 |
-
</div>
|
960 |
-
</div>
|
961 |
-
"""
|
962 |
-
|
963 |
-
return info
|
964 |
-
return '<div class="status-warning">⚠️ No scenario selected. Please choose an attack scenario to begin analysis.</div>'
|
965 |
|
966 |
-
# Create
|
967 |
-
with gr.Blocks(title="SOC
|
968 |
|
969 |
-
#
|
970 |
-
gr.
|
971 |
-
|
972 |
-
|
973 |
-
|
974 |
-
|
975 |
-
</h1>
|
976 |
-
<p style="margin: 0.5rem 0 0 0; font-size: 1.2rem; color: #6c757d; font-weight: 400;">
|
977 |
-
Beautiful Edition • Powered by GPT-OSS-20B
|
978 |
-
</p>
|
979 |
-
<div class="gpt-oss-badge" style="margin-top: 1rem;">
|
980 |
-
🚀 Multi-Strategy AI Model Loading • Enhanced UI/UX
|
981 |
-
</div>
|
982 |
-
</div>
|
983 |
-
</div>
|
984 |
""")
|
985 |
|
986 |
-
# Model status
|
987 |
-
status_display = gr.
|
|
|
|
|
|
|
|
|
|
|
988 |
|
|
|
989 |
with gr.Row():
|
990 |
-
|
991 |
-
|
992 |
-
|
993 |
-
|
994 |
-
|
995 |
-
|
996 |
-
|
997 |
-
|
998 |
-
interactive=True,
|
999 |
-
elem_classes=["custom-input"]
|
1000 |
-
)
|
1001 |
-
|
1002 |
-
scenario_info = gr.HTML()
|
1003 |
-
|
1004 |
-
gr.HTML('<div style="margin: 2rem 0 1rem 0; height: 2px; background: linear-gradient(90deg, #667eea, #764ba2); border-radius: 2px;"></div>')
|
1005 |
-
gr.HTML('<div class="section-header">⚙️ Analysis Configuration</div>')
|
1006 |
-
|
1007 |
-
alert_slider = gr.Slider(
|
1008 |
-
minimum=0,
|
1009 |
-
maximum=2,
|
1010 |
-
step=1,
|
1011 |
-
value=0,
|
1012 |
-
label="📋 Alert Selection",
|
1013 |
-
info="Choose which alert from the scenario to analyze",
|
1014 |
-
elem_classes=["custom-input"]
|
1015 |
)
|
1016 |
|
|
|
1017 |
analyst_level = gr.Radio(
|
1018 |
choices=["L1", "L2", "L3"],
|
1019 |
-
label="👤 Analyst Experience Level",
|
1020 |
value="L2",
|
1021 |
-
|
1022 |
-
|
1023 |
)
|
1024 |
|
|
|
1025 |
analyze_btn = gr.Button(
|
1026 |
-
"
|
1027 |
variant="primary",
|
1028 |
size="lg",
|
1029 |
-
elem_classes=["
|
1030 |
)
|
1031 |
|
1032 |
-
|
1033 |
-
|
1034 |
-
|
1035 |
-
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
1039 |
-
|
1040 |
-
<div class="content-card">
|
1041 |
-
<div class="section-header">🔧 System Features</div>
|
1042 |
-
<div style="margin-top: 1rem;">
|
1043 |
-
<div class="timeline-item" style="background: rgba(102, 126, 234, 0.1);">
|
1044 |
-
<strong>🧠 GPT-OSS-20B:</strong> OpenAI's latest reasoning model
|
1045 |
-
</div>
|
1046 |
-
<div class="timeline-item" style="background: rgba(40, 167, 69, 0.1);">
|
1047 |
-
<strong>⚡ Multi-Strategy:</strong> Automatic model fallback
|
1048 |
-
</div>
|
1049 |
-
<div class="timeline-item" style="background: rgba(253, 126, 20, 0.1);">
|
1050 |
-
<strong>🛡️ Error Recovery:</strong> Robust failure handling
|
1051 |
-
</div>
|
1052 |
-
<div class="timeline-item" style="background: rgba(220, 53, 69, 0.1);">
|
1053 |
-
<strong>🎯 Expert Analysis:</strong> High-quality templates
|
1054 |
-
</div>
|
1055 |
-
</div>
|
1056 |
-
</div>
|
1057 |
""")
|
1058 |
|
1059 |
-
# Right Panel - Results
|
1060 |
with gr.Column(scale=2):
|
1061 |
-
gr.HTML('<div class="section-header">📋 Security Alert Details</div>')
|
1062 |
-
alert_output = gr.HTML(
|
1063 |
-
'<div class="content-card"><p style="text-align: center; color: #6c757d; padding: 2rem;">Alert details will appear here after analysis...</p></div>'
|
1064 |
-
)
|
1065 |
|
1066 |
-
|
1067 |
-
analysis_output = gr.
|
1068 |
-
|
|
|
|
|
|
|
|
|
1069 |
)
|
1070 |
|
1071 |
-
|
|
|
|
|
|
|
|
|
|
|
1072 |
|
1073 |
-
#
|
1074 |
-
gr.
|
1075 |
-
|
1076 |
-
|
1077 |
-
|
1078 |
-
|
1079 |
-
|
1080 |
-
|
1081 |
-
|
1082 |
-
|
1083 |
-
<div class="stat-card">
|
1084 |
-
<div style="font-size: 2rem; margin-bottom: 0.5rem;">🚀</div>
|
1085 |
-
<div class="stat-label">GPT-OSS Integration</div>
|
1086 |
-
<p style="margin-top: 0.5rem; font-size: 0.8rem; color: #6c757d;">Latest OpenAI open-weight reasoning model</p>
|
1087 |
-
</div>
|
1088 |
-
<div class="stat-card">
|
1089 |
-
<div style="font-size: 2rem; margin-bottom: 0.5rem;">🔧</div>
|
1090 |
-
<div class="stat-label">Smart Fallbacks</div>
|
1091 |
-
<p style="margin-top: 0.5rem; font-size: 0.8rem; color: #6c757d;">Automatic error recovery and model switching</p>
|
1092 |
-
</div>
|
1093 |
-
<div class="stat-card">
|
1094 |
-
<div style="font-size: 2rem; margin-bottom: 0.5rem;">📊</div>
|
1095 |
-
<div class="stat-label">Rich Analytics</div>
|
1096 |
-
<p style="margin-top: 0.5rem; font-size: 0.8rem; color: #6c757d;">Visual confidence meters and threat timelines</p>
|
1097 |
-
</div>
|
1098 |
-
</div>
|
1099 |
-
<div style="margin-top: 2rem; padding-top: 1.5rem; border-top: 1px solid #dee2e6; color: #6c757d;">
|
1100 |
-
<strong>👨🎓 Research:</strong> Abdullah Alanazi | <strong>🏛️ Institution:</strong> KAUST | <strong>👨🏫 Supervisor:</strong> Prof. Ali Shoker
|
1101 |
-
</div>
|
1102 |
-
</div>
|
1103 |
""")
|
1104 |
|
1105 |
# Event handlers
|
1106 |
-
scenario_dropdown.change(
|
1107 |
-
fn=get_beautiful_scenario_info,
|
1108 |
-
inputs=[scenario_dropdown],
|
1109 |
-
outputs=[scenario_info]
|
1110 |
-
)
|
1111 |
-
|
1112 |
-
def update_slider_max(scenario_name):
|
1113 |
-
if scenario_name in ATTACK_SCENARIOS:
|
1114 |
-
max_alerts = len(ATTACK_SCENARIOS[scenario_name]["alerts"]) - 1
|
1115 |
-
return gr.Slider(maximum=max_alerts, value=0)
|
1116 |
-
return gr.Slider(maximum=2, value=0)
|
1117 |
-
|
1118 |
-
scenario_dropdown.change(
|
1119 |
-
fn=update_slider_max,
|
1120 |
-
inputs=[scenario_dropdown],
|
1121 |
-
outputs=[alert_slider]
|
1122 |
-
)
|
1123 |
-
|
1124 |
analyze_btn.click(
|
1125 |
-
fn=
|
1126 |
-
inputs=[
|
1127 |
-
outputs=[
|
1128 |
-
)
|
1129 |
-
|
1130 |
-
init_btn.click(
|
1131 |
-
fn=initialize_gpt_oss_safe,
|
1132 |
-
outputs=[status_display]
|
1133 |
-
)
|
1134 |
-
|
1135 |
-
# Initialize on startup
|
1136 |
-
demo.load(
|
1137 |
-
fn=get_beautiful_scenario_info,
|
1138 |
-
inputs=[scenario_dropdown],
|
1139 |
-
outputs=[scenario_info]
|
1140 |
)
|
1141 |
|
|
|
1142 |
demo.load(
|
1143 |
-
fn=
|
1144 |
outputs=[status_display]
|
1145 |
)
|
1146 |
|
1147 |
if __name__ == "__main__":
|
1148 |
-
demo.launch(
|
1149 |
-
share=True,
|
1150 |
-
server_name="0.0.0.0",
|
1151 |
-
server_port=7860,
|
1152 |
-
show_error=True
|
1153 |
-
)
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
+
from transformers import pipeline
|
|
|
|
|
|
|
4 |
import torch
|
5 |
import time
|
|
|
6 |
|
7 |
+
# Simple CSS for clean design
|
8 |
+
simple_css = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
.gradio-container {
|
10 |
+
max-width: 900px !important;
|
11 |
margin: 0 auto !important;
|
12 |
+
font-family: 'Arial', sans-serif;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
}
|
14 |
|
15 |
+
.threat-input {
|
16 |
+
border-radius: 8px !important;
|
17 |
+
border: 2px solid #e0e0e0 !important;
|
18 |
+
padding: 15px !important;
|
19 |
+
font-size: 14px !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
}
|
21 |
|
22 |
+
.threat-input:focus {
|
23 |
+
border-color: #667eea !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
}
|
25 |
|
26 |
+
.analyze-btn {
|
27 |
+
background: #667eea !important;
|
|
|
28 |
border: none !important;
|
29 |
+
border-radius: 8px !important;
|
30 |
+
padding: 12px 30px !important;
|
31 |
+
font-size: 16px !important;
|
32 |
font-weight: 600 !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
color: white !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
}
|
35 |
|
36 |
+
.analysis-output {
|
37 |
+
background: #f8f9fa !important;
|
38 |
+
border-radius: 8px !important;
|
39 |
+
border: 1px solid #e0e0e0 !important;
|
40 |
+
padding: 20px !important;
|
41 |
+
line-height: 1.6 !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
}
|
43 |
|
44 |
+
.status-box {
|
45 |
+
background: #d4edda !important;
|
46 |
+
border: 1px solid #c3e6cb !important;
|
47 |
+
color: #155724 !important;
|
48 |
+
padding: 10px !important;
|
49 |
+
border-radius: 6px !important;
|
50 |
+
margin: 10px 0 !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
}
|
52 |
"""
|
53 |
|
54 |
+
# Global model variables
|
55 |
+
pipe = None
|
56 |
+
model_status = "🔄 Loading model..."
|
|
|
57 |
|
58 |
@spaces.GPU
|
59 |
+
def load_model():
|
60 |
+
"""Load the best available model"""
|
61 |
+
global pipe, model_status
|
62 |
+
|
63 |
+
models_to_try = [
|
64 |
+
"openai/gpt-oss-20b",
|
65 |
+
"microsoft/DialoGPT-large",
|
66 |
+
"microsoft/DialoGPT-medium",
|
67 |
+
"gpt2-large"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
]
|
69 |
|
70 |
+
for model_name in models_to_try:
|
|
|
|
|
71 |
try:
|
72 |
+
print(f"🔄 Loading {model_name}...")
|
|
|
|
|
73 |
|
74 |
+
pipe = pipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
"text-generation",
|
76 |
+
model=model_name,
|
77 |
+
torch_dtype="auto",
|
78 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
79 |
+
trust_remote_code=True
|
80 |
)
|
81 |
|
82 |
+
# Test the model
|
83 |
+
pipe("Test", max_new_tokens=5, do_sample=False)
|
84 |
|
85 |
+
model_status = f"✅ {model_name} ready"
|
86 |
+
print(model_status)
|
87 |
+
return model_status
|
88 |
|
89 |
except Exception as e:
|
90 |
+
print(f"❌ {model_name} failed: {str(e)[:50]}")
|
|
|
91 |
if torch.cuda.is_available():
|
92 |
torch.cuda.empty_cache()
|
93 |
continue
|
94 |
|
95 |
+
model_status = "⚠️ Using fallback mode"
|
96 |
+
return model_status
|
97 |
|
98 |
+
@spaces.GPU
|
99 |
+
def analyze_threat(threat_description, analyst_level):
|
100 |
+
"""Simple threat analysis"""
|
101 |
+
|
102 |
+
if not threat_description.strip():
|
103 |
+
return "Please enter a threat description first.", ""
|
104 |
+
|
105 |
+
start_time = time.time()
|
106 |
+
|
107 |
+
# Create simple prompt
|
108 |
+
prompt = f"""As a {analyst_level} cybersecurity analyst, analyze this threat:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
THREAT: {threat_description}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
Provide a {analyst_level} level security analysis including:
|
113 |
+
- Threat assessment
|
114 |
+
- Potential impact
|
115 |
+
- Recommended actions
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
ANALYSIS:"""
|
|
|
|
|
118 |
|
119 |
+
if pipe:
|
120 |
+
try:
|
121 |
+
result = pipe(
|
122 |
+
prompt,
|
123 |
+
max_new_tokens=300,
|
124 |
+
do_sample=True,
|
125 |
+
temperature=0.3,
|
126 |
+
top_p=0.9,
|
127 |
+
repetition_penalty=1.1
|
128 |
+
)
|
129 |
+
|
130 |
+
analysis = result[0]['generated_text'][len(prompt):].strip()
|
131 |
+
|
132 |
+
if len(analysis) < 30:
|
133 |
+
analysis = get_simple_fallback(threat_description, analyst_level)
|
134 |
+
|
135 |
+
except Exception as e:
|
136 |
+
analysis = f"AI Error: {str(e)[:100]}\n\n{get_simple_fallback(threat_description, analyst_level)}"
|
137 |
+
else:
|
138 |
+
analysis = get_simple_fallback(threat_description, analyst_level)
|
139 |
|
140 |
+
processing_time = round(time.time() - start_time, 2)
|
141 |
+
status = f"✅ Analysis completed in {processing_time}s | {model_status}"
|
142 |
+
|
143 |
+
return analysis, status
|
144 |
|
145 |
+
def get_simple_fallback(threat_description, analyst_level):
|
146 |
+
"""Simple fallback analysis"""
|
147 |
+
|
148 |
+
if analyst_level == "L1":
|
149 |
+
return f"""🚨 L1 TRIAGE ANALYSIS
|
150 |
|
151 |
+
THREAT SUMMARY:
|
152 |
+
{threat_description}
|
153 |
|
154 |
+
IMMEDIATE ACTIONS:
|
155 |
+
• Assess severity and scope
|
156 |
+
• Document all available evidence
|
157 |
+
• Isolate affected systems if needed
|
158 |
+
• Escalate to L2 if severity is high
|
159 |
|
160 |
+
PRIORITY: Immediate containment and escalation decision required"""
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
+
elif analyst_level == "L2":
|
163 |
+
return f"""🔍 L2 INVESTIGATION ANALYSIS
|
164 |
|
165 |
+
THREAT DETAILS:
|
166 |
+
{threat_description}
|
167 |
|
168 |
+
INVESTIGATION STEPS:
|
169 |
+
1. Collect and preserve evidence
|
170 |
+
2. Analyze attack vectors and methods
|
171 |
+
3. Determine scope of compromise
|
172 |
+
4. Identify indicators of compromise (IOCs)
|
173 |
+
5. Assess potential data exposure
|
174 |
|
175 |
+
CONTAINMENT:
|
176 |
+
• Implement network segmentation
|
177 |
+
• Deploy additional monitoring
|
178 |
+
• Review authentication logs
|
179 |
+
• Check for lateral movement
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
+
NEXT STEPS:
|
182 |
+
• Continue monitoring for related activity
|
183 |
+
• Update security controls as needed
|
184 |
+
• Consider L3 escalation for complex threats"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
+
else: # L3
|
187 |
+
return f"""🎯 L3 EXPERT ANALYSIS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
+
STRATEGIC THREAT ASSESSMENT:
|
190 |
+
{threat_description}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
+
ADVANCED ANALYSIS:
|
193 |
+
• Threat actor attribution assessment
|
194 |
+
• Campaign analysis and TTPs
|
195 |
+
• Business impact evaluation
|
196 |
+
• Risk quantification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
STRATEGIC RESPONSE:
|
199 |
+
• Coordinate incident response team
|
200 |
+
• Executive briefing preparation
|
201 |
+
• Regulatory compliance review
|
202 |
+
• Long-term security posture improvements
|
203 |
+
|
204 |
+
RECOMMENDATIONS:
|
205 |
+
• Implement advanced threat hunting
|
206 |
+
• Enhance detection capabilities
|
207 |
+
• Review security architecture
|
208 |
+
• Consider external forensics support"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
+
# Create simple interface
|
211 |
+
with gr.Blocks(title="Simple SOC Analyzer", theme=gr.themes.Soft(), css=simple_css) as demo:
|
212 |
|
213 |
+
# Simple header
|
214 |
+
gr.Markdown("""
|
215 |
+
# 🛡️ SOC Threat Analyzer
|
216 |
+
**Simple • Fast • Effective**
|
217 |
+
|
218 |
+
Enter any security threat and get instant AI analysis.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
""")
|
220 |
|
221 |
+
# Model status
|
222 |
+
status_display = gr.Textbox(
|
223 |
+
value="🔄 Loading model...",
|
224 |
+
label="System Status",
|
225 |
+
interactive=False,
|
226 |
+
elem_classes=["status-box"]
|
227 |
+
)
|
228 |
|
229 |
+
# Main interface
|
230 |
with gr.Row():
|
231 |
+
with gr.Column(scale=1):
|
232 |
+
|
233 |
+
# Threat input
|
234 |
+
threat_input = gr.Textbox(
|
235 |
+
label="🚨 Describe the Security Threat",
|
236 |
+
placeholder="Example: Suspicious PowerShell execution detected on user workstation with encoded commands...",
|
237 |
+
lines=5,
|
238 |
+
elem_classes=["threat-input"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
)
|
240 |
|
241 |
+
# Analysis level
|
242 |
analyst_level = gr.Radio(
|
243 |
choices=["L1", "L2", "L3"],
|
|
|
244 |
value="L2",
|
245 |
+
label="Analysis Level",
|
246 |
+
info="L1: Quick Triage • L2: Detailed Investigation • L3: Strategic Analysis"
|
247 |
)
|
248 |
|
249 |
+
# Analyze button
|
250 |
analyze_btn = gr.Button(
|
251 |
+
"🔍 Analyze Threat",
|
252 |
variant="primary",
|
253 |
size="lg",
|
254 |
+
elem_classes=["analyze-btn"]
|
255 |
)
|
256 |
|
257 |
+
# Quick examples
|
258 |
+
gr.Markdown("""
|
259 |
+
### 📝 Quick Examples:
|
260 |
+
- Suspicious email with malicious attachment
|
261 |
+
- Unusual network traffic to external IP
|
262 |
+
- User account showing signs of compromise
|
263 |
+
- Ransomware indicators detected on server
|
264 |
+
- Failed login attempts from multiple locations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
""")
|
266 |
|
|
|
267 |
with gr.Column(scale=2):
|
|
|
|
|
|
|
|
|
268 |
|
269 |
+
# Analysis output
|
270 |
+
analysis_output = gr.Textbox(
|
271 |
+
label="🤖 Security Analysis",
|
272 |
+
lines=20,
|
273 |
+
interactive=False,
|
274 |
+
elem_classes=["analysis-output"],
|
275 |
+
placeholder="Analysis will appear here..."
|
276 |
)
|
277 |
|
278 |
+
# Processing status
|
279 |
+
process_status = gr.Textbox(
|
280 |
+
label="Processing Status",
|
281 |
+
interactive=False,
|
282 |
+
lines=1
|
283 |
+
)
|
284 |
|
285 |
+
# Quick action buttons
|
286 |
+
with gr.Row():
|
287 |
+
gr.Button("💾 Save Analysis", variant="secondary", size="sm")
|
288 |
+
gr.Button("📧 Email Report", variant="secondary", size="sm")
|
289 |
+
gr.Button("🔄 Clear All", variant="secondary", size="sm")
|
290 |
+
|
291 |
+
# Simple footer
|
292 |
+
gr.Markdown("""
|
293 |
+
---
|
294 |
+
**💡 Tips:** Be specific about what you observed, include timestamps, IP addresses, user accounts, or file names when available.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
""")
|
296 |
|
297 |
# Event handlers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
analyze_btn.click(
|
299 |
+
fn=analyze_threat,
|
300 |
+
inputs=[threat_input, analyst_level],
|
301 |
+
outputs=[analysis_output, process_status]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
)
|
303 |
|
304 |
+
# Initialize model on startup
|
305 |
demo.load(
|
306 |
+
fn=load_model,
|
307 |
outputs=[status_display]
|
308 |
)
|
309 |
|
310 |
if __name__ == "__main__":
|
311 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|