File size: 22,843 Bytes
c8b0d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260ec72
f4c0f01
 
6750126
b7669f4
6750126
ae5e187
c8b0d13
64f3706
6750126
 
 
 
c8b0d13
 
 
 
 
 
 
5224f4e
260ec72
 
c8b0d13
260ec72
 
 
c8b0d13
260ec72
6750126
260ec72
 
 
6750126
260ec72
 
6750126
260ec72
 
 
 
 
6750126
260ec72
 
6750126
260ec72
 
 
c8b0d13
 
 
 
 
260ec72
 
 
 
 
 
 
6750126
260ec72
 
 
 
 
 
 
 
6750126
260ec72
 
 
 
bc85188
260ec72
6750126
 
 
 
 
bc85188
6750126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5224f4e
c8b0d13
 
 
260ec72
 
 
64f3706
6750126
 
 
 
 
 
 
 
 
 
 
 
 
 
64f3706
6750126
 
5224f4e
6750126
 
d04e4d9
6750126
 
 
260ec72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc85188
260ec72
64f3706
6750126
260ec72
6750126
260ec72
9df1e5f
c8b0d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260ec72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae5e187
260ec72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6750126
c8b0d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6750126
c8b0d13
 
 
 
260ec72
c8b0d13
 
260ec72
 
c8b0d13
6750126
260ec72
c8b0d13
 
 
 
 
260ec72
 
 
 
 
 
 
 
 
c8b0d13
260ec72
 
 
 
c8b0d13
 
260ec72
 
c8b0d13
260ec72
c8b0d13
 
 
 
 
 
 
 
 
 
 
 
260ec72
c8b0d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6750126
260ec72
 
 
 
 
 
 
 
 
 
 
 
 
 
c8b0d13
260ec72
 
 
 
 
c8b0d13
260ec72
 
6750126
c8b0d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260ec72
 
64f3706
260ec72
c8b0d13
64f3706
260ec72
c8b0d13
 
260ec72
 
 
 
 
 
64f3706
260ec72
 
6750126
c8b0d13
 
 
260ec72
 
 
 
 
 
c8b0d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260ec72
c8b0d13
 
 
 
 
260ec72
 
c8b0d13
 
 
 
 
 
 
 
 
 
260ec72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8b0d13
5224f4e
260ec72
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
# Force install sentencepiece
import sys
import subprocess

def install_package(package):
    subprocess.check_call([sys.executable, "-m", "pip", "install", package])

try:
    import sentencepiece
    print("SentencePiece is already installed")
except ImportError:
    print("Installing SentencePiece...")
    install_package("sentencepiece==0.1.99")
    print("SentencePiece installed successfully")

# Import other required libraries
import gradio as gr
import os
import re
import torch
import numpy as np
from pathlib import Path
import PyPDF2
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM
from sentence_transformers import SentenceTransformer
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.schema import Document
from langchain.embeddings import HuggingFaceEmbeddings
import spaces

# Global variables to store model state
model = None
tokenizer = None
assistant = None
model_type = "primary"  # Track if we're using primary or fallback model

# Create the Vision 2030 Assistant class
class Vision2030Assistant:
    def __init__(self, model, tokenizer, vector_store, model_type="primary"):
        self.model = model
        self.tokenizer = tokenizer
        self.vector_store = vector_store
        self.model_type = model_type
        self.conversation_history = []
        
    def answer(self, user_query):
        # Detect language
        language = detect_language(user_query)
        
        # Add user query to conversation history
        self.conversation_history.append({"role": "user", "content": user_query})
        
        # Get the full conversation context
        conversation_context = "\n".join([
            f"{'User' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
            for msg in self.conversation_history[-6:]  # Keep last 3 turns (6 messages)
        ])
        
        # Enhance query with conversation context for better retrieval
        enhanced_query = f"{conversation_context}\n{user_query}"
        
        # Retrieve relevant contexts
        contexts = retrieve_context(enhanced_query, self.vector_store, top_k=5)
        
        # Generate response based on model type
        if self.model_type == "primary":
            response = generate_response_primary(user_query, contexts, self.model, self.tokenizer, language)
        else:
            response = generate_response_fallback(user_query, contexts, self.model, self.tokenizer, language)
        
        # Add response to conversation history
        self.conversation_history.append({"role": "assistant", "content": response})
        
        # Also return sources for transparency
        sources = [ctx.get("source", "Unknown") for ctx in contexts]
        unique_sources = list(set(sources))
        
        # Format the response with sources
        if unique_sources:
            source_text = "\n\nSources: " + ", ".join([os.path.basename(src) for src in unique_sources])
            response_with_sources = response + source_text
        else:
            response_with_sources = response
        
        return response_with_sources
    
    def reset_conversation(self):
        """Reset the conversation history"""
        self.conversation_history = []
        return "Conversation has been reset."

# Helper functions
def detect_language(text):
    """Detect if text is primarily Arabic or English"""
    arabic_chars = re.findall(r'[\u0600-\u06FF]', text)
    is_arabic = len(arabic_chars) > len(text) * 0.5
    return "arabic" if is_arabic else "english"

def retrieve_context(query, vector_store, top_k=5):
    """Retrieve most relevant document chunks for a given query"""
    # Search the vector store using similarity search
    results = vector_store.similarity_search_with_score(query, k=top_k)
    
    # Format the retrieved contexts
    contexts = []
    for doc, score in results:
        contexts.append({
            "content": doc.page_content,
            "source": doc.metadata.get("source", "Unknown"),
            "relevance_score": score
        })
    
    return contexts

@spaces.GPU
def generate_response_primary(query, contexts, model, tokenizer, language="auto"):
    """Generate a response using ALLaM model"""
    # Auto-detect language if not specified
    if language == "auto":
        language = detect_language(query)
    
    # Format the prompt based on language
    if language == "arabic":
        instruction = (
            "أنت مساعد افتراضي يهتم برؤية السعودية 2030. استخدم المعلومات التالية للإجابة على السؤال. "
            "إذا لم تعرف الإجابة، فقل بأمانة إنك لا تعرف."
        )
    else:  # english
        instruction = (
            "You are a virtual assistant for Saudi Vision 2030. Use the following information to answer the question. "
            "If you don't know the answer, honestly say you don't know."
        )
    
    # Combine retrieved contexts
    context_text = "\n\n".join([f"Document: {ctx['content']}" for ctx in contexts])
    
    # Format the prompt for ALLaM instruction format
    prompt = f"""<s>[INST] {instruction}

Context:
{context_text}

Question: {query} [/INST]</s>"""
    
    try:
        # Generate response with appropriate parameters for ALLaM
        inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
        
        # Generate with appropriate parameters
        outputs = model.generate(
            inputs.input_ids,
            attention_mask=inputs.attention_mask,
            max_new_tokens=512,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            repetition_penalty=1.1
        )
        
        # Decode the response
        full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Extract just the answer part (after the instruction)
        response = full_output.split("[/INST]")[-1].strip()
        
        # If response is empty for some reason, return the full output
        if not response:
            response = full_output
            
        return response
        
    except Exception as e:
        print(f"Error during generation: {e}")
        # Fallback response
        return "I apologize, but I encountered an error while generating a response."

@spaces.GPU
def generate_response_fallback(query, contexts, model, tokenizer, language="auto"):
    """Generate a response using the fallback model (BLOOM or mBART)"""
    # Auto-detect language if not specified
    if language == "auto":
        language = detect_language(query)
    
    # Format the prompt based on language
    if language == "arabic":
        system_prompt = (
            "أنت مساعد افتراضي يهتم برؤية السعودية 2030. استخدم السياق التالي للإجابة على السؤال: "
        )
    else:
        system_prompt = (
            "You are a virtual assistant for Saudi Vision 2030. Use the following context to answer the question: "
        )
    
    # Combine retrieved contexts
    context_text = "\n\n".join([f"Document: {ctx['content']}" for ctx in contexts])
    
    # Format prompt for fallback model (simpler format)
    prompt = f"{system_prompt}\n\nContext:\n{context_text}\n\nQuestion: {query}\n\nAnswer:"
    
    try:
        # Generate with fallback model
        inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True).to(model.device)
        
        outputs = model.generate(
            inputs.input_ids,
            attention_mask=inputs.attention_mask,
            max_length=inputs.input_ids.shape[1] + 512,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
        
        # For most models, this is how we extract the response
        response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
        
        # Cleanup and return
        return response.strip()
    
    except Exception as e:
        print(f"Error during fallback generation: {e}")
        return "I apologize, but I encountered an error while generating a response with the fallback model."

def process_pdf_files(pdf_files):
    """Process PDF files and create documents"""
    documents = []
    
    for pdf_file in pdf_files:
        try:
            # Save the uploaded file temporarily
            temp_path = f"temp_{pdf_file.name}"
            with open(temp_path, "wb") as f:
                f.write(pdf_file.read())
            
            # Extract text
            text = ""
            with open(temp_path, 'rb') as file:
                reader = PyPDF2.PdfReader(file)
                for page in reader.pages:
                    page_text = page.extract_text()
                    if page_text:
                        text += page_text + "\n\n"
            
            # Clean up
            os.remove(temp_path)
            
            if text.strip():  # If we got some text
                doc = Document(
                    page_content=text,
                    metadata={"source": pdf_file.name, "filename": pdf_file.name}
                )
                documents.append(doc)
                print(f"Successfully processed: {pdf_file.name}")
            else:
                print(f"Warning: No text extracted from {pdf_file.name}")
        except Exception as e:
            print(f"Error processing {pdf_file.name}: {e}")
    
    print(f"Processed {len(documents)} PDF documents")
    return documents

def create_vector_store(documents):
    """Create a vector store from documents"""
    # Text splitter for breaking documents into chunks
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=500,
        chunk_overlap=50,
        separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
    )
    
    # Split documents into chunks
    chunks = []
    for doc in documents:
        doc_chunks = text_splitter.split_text(doc.page_content)
        # Preserve metadata for each chunk
        chunks.extend([
            Document(page_content=chunk, metadata=doc.metadata)
            for chunk in doc_chunks
        ])
    
    print(f"Created {len(chunks)} chunks from {len(documents)} documents")
    
    # Create embedding function
    embedding_function = HuggingFaceEmbeddings(
        model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
    )
    
    # Create FAISS index
    vector_store = FAISS.from_documents(chunks, embedding_function)
    return vector_store

# Attempt to create mock documents if none are available yet
def create_mock_documents():
    """Create mock documents about Vision 2030"""
    documents = []
    
    # Sample content about Vision 2030 in both languages
    samples = [
        {
            "content": "رؤية السعودية 2030 هي خطة استراتيجية تهدف إلى تنويع الاقتصاد السعودي وتقليل الاعتماد على النفط مع تطوير قطاعات مختلفة مثل الصحة والتعليم والسياحة.",
            "source": "vision2030_overview_ar.txt"
        },
        {
            "content": "Saudi Vision 2030 is a strategic framework aiming to diversify Saudi Arabia's economy and reduce dependence on oil, while developing sectors like health, education, and tourism.",
            "source": "vision2030_overview_en.txt"
        },
        {
            "content": "تشمل الأهداف الاقتصادية لرؤية 2030 زيادة مساهمة القطاع الخاص من 40% إلى 65% من الناتج المحلي الإجمالي، ورفع نسبة الصادرات غير النفطية من 16% إلى 50% من الناتج المحلي الإجمالي غير النفطي، وخفض البطالة إلى 7%.",
            "source": "economic_goals_ar.txt"
        },
        {
            "content": "The economic goals of Vision 2030 include increasing private sector contribution from 40% to 65% of GDP, raising non-oil exports from 16% to 50%, and reducing unemployment from 11.6% to 7%.",
            "source": "economic_goals_en.txt"
        },
        {
            "content": "تركز رؤية 2030 على زيادة مشاركة المرأة في سوق العمل من 22% إلى 30% بحلول عام 2030، مع توفير فرص متساوية في التعليم والعمل.",
            "source": "women_empowerment_ar.txt"
        },
        {
            "content": "Vision 2030 emphasizes increasing women's participation in the workforce from 22% to 30% by 2030, while providing equal opportunities in education and employment.",
            "source": "women_empowerment_en.txt"
        }
    ]
    
    # Create documents from samples
    for sample in samples:
        doc = Document(
            page_content=sample["content"],
            metadata={"source": sample["source"], "filename": sample["source"]}
        )
        documents.append(doc)
    
    print(f"Created {len(documents)} mock documents")
    return documents

@spaces.GPU
def load_primary_model():
    """Load the ALLaM-7B model with error handling"""
    global model, tokenizer, model_type
    
    if model is not None and tokenizer is not None and model_type == "primary":
        return "Primary model (ALLaM-7B) already loaded"
    
    model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
    print(f"Loading primary model: {model_name}")

    try:
        # Try to import sentencepiece explicitly first
        import sentencepiece as spm
        print("SentencePiece imported successfully")
        
        # First attempt with AutoTokenizer and explicit trust_remote_code
        tokenizer = AutoTokenizer.from_pretrained(
            model_name,
            trust_remote_code=True,
            use_fast=False
        )
        
        # Load model with appropriate settings for ALLaM
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.bfloat16,
            trust_remote_code=True,
            device_map="auto",
        )
        
        model_type = "primary"
        return "Primary model (ALLaM-7B) loaded successfully!"
        
    except Exception as e:
        error_msg = f"Primary model loading failed: {e}"
        print(error_msg)
        return error_msg

@spaces.GPU
def load_fallback_model():
    """Load the fallback model (BLOOM-7B1) when ALLaM fails"""
    global model, tokenizer, model_type
    
    if model is not None and tokenizer is not None and model_type == "fallback":
        return "Fallback model already loaded"
    
    try:
        print("Loading fallback model: BLOOM-7B1...")
        
        # Use BLOOM model as fallback (it doesn't need SentencePiece)
        tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-7b1")
        model = AutoModelForCausalLM.from_pretrained(
            "bigscience/bloom-7b1",
            torch_dtype=torch.bfloat16,
            device_map="auto",
            load_in_8bit=True  # Reduce memory usage
        )
        
        model_type = "fallback"
        return "Fallback model (BLOOM-7B1) loaded successfully!"
    except Exception as e:
        return f"Fallback model loading failed: {e}"

def load_mbart_model():
    """Load mBART as a second fallback option"""
    global model, tokenizer, model_type
    
    try:
        print("Loading mBART multilingual model...")
        
        model_name = "facebook/mbart-large-50-many-to-many-mmt"
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForSeq2SeqLM.from_pretrained(
            model_name,
            torch_dtype=torch.float16,
            device_map="auto",
            load_in_8bit=True
        )
        
        model_type = "mbart"
        return "mBART multilingual model loaded successfully!"
    except Exception as e:
        return f"mBART model loading failed: {e}"

# Gradio Interface Functions
def process_pdfs(pdf_files):
    if not pdf_files:
        return "No files uploaded. Please upload PDF documents about Vision 2030."
    
    documents = process_pdf_files(pdf_files)
    
    if not documents:
        return "Failed to extract text from the uploaded PDFs."
    
    global assistant, model, tokenizer
    
    # Ensure model is loaded
    if model is None or tokenizer is None:
        return "Please load a model first (primary or fallback) before processing documents."
    
    # Create vector store
    vector_store = create_vector_store(documents)
    
    # Initialize assistant
    assistant = Vision2030Assistant(model, tokenizer, vector_store, model_type)
    
    return f"Successfully processed {len(documents)} documents. The assistant is ready to use!"

def use_mock_documents():
    """Use mock documents when no PDFs are available"""
    documents = create_mock_documents()
    
    global assistant, model, tokenizer
    
    # Ensure model is loaded
    if model is None or tokenizer is None:
        return "Please load a model first (primary or fallback) before using mock documents."
    
    # Create vector store
    vector_store = create_vector_store(documents)
    
    # Initialize assistant
    assistant = Vision2030Assistant(model, tokenizer, vector_store, model_type)
    
    return "Successfully initialized with mock Vision 2030 documents. The assistant is ready for testing!"

@spaces.GPU
def answer_query(message, history):
    global assistant
    
    if assistant is None:
        return [(message, "Please load a model and process documents first (or use mock documents for testing).")]
    
    response = assistant.answer(message)
    history.append((message, response))
    return history

def reset_chat():
    global assistant
    
    if assistant is None:
        return "No active conversation to reset."
    
    reset_message = assistant.reset_conversation()
    return reset_message

def restart_factory():
    return "Restarting the application... Please reload the page in a few seconds."

# Create Gradio interface
with gr.Blocks(title="Vision 2030 Virtual Assistant") as demo:
    gr.Markdown("# Vision 2030 Virtual Assistant")
    gr.Markdown("Ask questions about Saudi Vision 2030 goals, projects, and progress in Arabic or English.")
    
    with gr.Tab("Setup"):
        gr.Markdown("## Step 1: Load a Model")
        with gr.Row():
            with gr.Column():
                primary_btn = gr.Button("Load ALLaM-7B Model (Primary)", variant="primary")
                primary_output = gr.Textbox(label="Primary Model Status")
                primary_btn.click(load_primary_model, inputs=[], outputs=primary_output)
            
            with gr.Column():
                fallback_btn = gr.Button("Load BLOOM-7B1 (Fallback)", variant="secondary")
                fallback_output = gr.Textbox(label="Fallback Model Status")
                fallback_btn.click(load_fallback_model, inputs=[], outputs=fallback_output)
            
            with gr.Column():
                mbart_btn = gr.Button("Load mBART (Alternative)", variant="secondary")
                mbart_output = gr.Textbox(label="mBART Model Status")
                mbart_btn.click(load_mbart_model, inputs=[], outputs=mbart_output)
        
        gr.Markdown("## Step 2: Prepare Documents")
        with gr.Row():
            with gr.Column():
                pdf_files = gr.File(file_types=[".pdf"], file_count="multiple", label="Upload PDF Documents")
                process_btn = gr.Button("Process Documents", variant="primary")
                process_output = gr.Textbox(label="Processing Status")
                process_btn.click(process_pdfs, inputs=[pdf_files], outputs=process_output)
            
            with gr.Column():
                mock_btn = gr.Button("Use Mock Documents (for testing)", variant="secondary")
                mock_output = gr.Textbox(label="Mock Documents Status")
                mock_btn.click(use_mock_documents, inputs=[], outputs=mock_output)
        
        gr.Markdown("## Troubleshooting")
        restart_btn = gr.Button("Restart Application", variant="secondary")
        restart_output = gr.Textbox(label="Restart Status")
        restart_btn.click(restart_factory, inputs=[], outputs=restart_output)
        restart_btn.click(None, [], None, _js="() => {setTimeout(() => {location.reload()}, 5000)}")
    
    with gr.Tab("Chat"):
        chatbot = gr.Chatbot(label="Conversation", height=500)
        
        with gr.Row():
            message = gr.Textbox(
                label="Ask a question about Vision 2030 (in Arabic or English)",
                placeholder="What are the main goals of Vision 2030?",
                lines=2
            )
            submit_btn = gr.Button("Submit", variant="primary")
        
        reset_btn = gr.Button("Reset Conversation")
        
        gr.Markdown("### Example Questions")
        with gr.Row():
            with gr.Column():
                gr.Markdown("**English Questions:**")
                en_examples = gr.Examples(
                    examples=[
                        "What is Saudi Vision 2030?",
                        "What are the economic goals of Vision 2030?",
                        "How does Vision 2030 support women's empowerment?",
                        "What environmental initiatives are part of Vision 2030?",
                        "What is the role of the Public Investment Fund in Vision 2030?"
                    ],
                    inputs=message
                )
            
            with gr.Column():
                gr.Markdown("**Arabic Questions:**")
                ar_examples = gr.Examples(
                    examples=[
                        "ما هي رؤية السعودية 2030؟",
                        "ما هي الأهداف الاقتصادية لرؤية 2030؟",
                        "كيف تدعم رؤية 2030 تمكين المرأة السعودية؟",
                        "ما هي مبادرات رؤية 2030 للحفاظ على البيئة؟",
                        "ما هي استراتيجية صندوق الاستثمارات العامة في رؤية 2030؟"
                    ],
                    inputs=message
                )
        
        reset_output = gr.Textbox(label="Reset Status", visible=False)
        submit_btn.click(answer_query, inputs=[message, chatbot], outputs=[chatbot])
        message.submit(answer_query, inputs=[message, chatbot], outputs=[chatbot])
        reset_btn.click(reset_chat, inputs=[], outputs=[reset_output])
        reset_btn.click(lambda: None, inputs=[], outputs=[chatbot], postprocess=lambda: [])

# Launch the app
demo.launch()