File size: 14,267 Bytes
260ec72
f4c0f01
 
6750126
b7669f4
6750126
ae5e187
6750126
64f3706
6750126
 
 
 
d69f501
5224f4e
260ec72
 
 
 
 
 
 
6750126
260ec72
 
 
6750126
260ec72
 
6750126
260ec72
 
 
 
 
6750126
260ec72
 
6750126
260ec72
 
 
 
 
 
 
 
 
 
 
 
6750126
260ec72
 
 
 
 
 
 
 
6750126
260ec72
 
 
 
bc85188
260ec72
6750126
 
 
 
 
bc85188
6750126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5224f4e
d69f501
260ec72
6750126
260ec72
 
 
64f3706
6750126
 
 
 
 
 
 
 
 
 
 
 
 
 
64f3706
6750126
 
5224f4e
6750126
 
d04e4d9
6750126
 
 
260ec72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc85188
260ec72
64f3706
6750126
260ec72
6750126
260ec72
9df1e5f
260ec72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae5e187
260ec72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6750126
260ec72
 
 
 
6750126
260ec72
d69f501
260ec72
 
 
 
 
 
 
 
6750126
260ec72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6750126
260ec72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6750126
d69f501
260ec72
 
64f3706
260ec72
 
64f3706
260ec72
 
 
 
 
 
 
 
64f3706
260ec72
 
6750126
260ec72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5224f4e
260ec72
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import gradio as gr
import os
import re
import torch
import numpy as np
from pathlib import Path
import PyPDF2
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.schema import Document
from langchain.embeddings import HuggingFaceEmbeddings
import spaces  # Add this import for Hugging Face Spaces

# Create the Vision 2030 Assistant class
class Vision2030Assistant:
    def __init__(self, model, tokenizer, vector_store):
        self.model = model
        self.tokenizer = tokenizer
        self.vector_store = vector_store
        self.conversation_history = []
        
    def answer(self, user_query):
        # Detect language
        language = detect_language(user_query)
        
        # Add user query to conversation history
        self.conversation_history.append({"role": "user", "content": user_query})
        
        # Get the full conversation context
        conversation_context = "\n".join([
            f"{'User' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
            for msg in self.conversation_history[-6:]  # Keep last 3 turns (6 messages)
        ])
        
        # Enhance query with conversation context for better retrieval
        enhanced_query = f"{conversation_context}\n{user_query}"
        
        # Retrieve relevant contexts
        contexts = retrieve_context(enhanced_query, self.vector_store, top_k=5)
        
        # Generate response
        response = generate_response(user_query, contexts, self.model, self.tokenizer, language)
        
        # Add response to conversation history
        self.conversation_history.append({"role": "assistant", "content": response})
        
        # Also return sources for transparency
        sources = [ctx.get("source", "Unknown") for ctx in contexts]
        unique_sources = list(set(sources))
        
        # Format the response with sources
        if unique_sources:
            source_text = "\n\nSources: " + ", ".join([os.path.basename(src) for src in unique_sources])
            response_with_sources = response + source_text
        else:
            response_with_sources = response
        
        return response_with_sources
    
    def reset_conversation(self):
        """Reset the conversation history"""
        self.conversation_history = []
        return "Conversation has been reset."

# Helper functions
def detect_language(text):
    """Detect if text is primarily Arabic or English"""
    arabic_chars = re.findall(r'[\u0600-\u06FF]', text)
    is_arabic = len(arabic_chars) > len(text) * 0.5
    return "arabic" if is_arabic else "english"

def retrieve_context(query, vector_store, top_k=5):
    """Retrieve most relevant document chunks for a given query"""
    # Search the vector store using similarity search
    results = vector_store.similarity_search_with_score(query, k=top_k)
    
    # Format the retrieved contexts
    contexts = []
    for doc, score in results:
        contexts.append({
            "content": doc.page_content,
            "source": doc.metadata.get("source", "Unknown"),
            "relevance_score": score
        })
    
    return contexts

@spaces.GPU  # Add decorator for GPU usage
def generate_response(query, contexts, model, tokenizer, language="auto"):
    """Generate a response using retrieved contexts with ALLaM-specific formatting"""
    # Auto-detect language if not specified
    if language == "auto":
        language = detect_language(query)
    
    # Format the prompt based on language
    if language == "arabic":
        instruction = (
            "أنت مساعد افتراضي يهتم برؤية السعودية 2030. استخدم المعلومات التالية للإجابة على السؤال. "
            "إذا لم تعرف الإجابة، فقل بأمانة إنك لا تعرف."
        )
    else:  # english
        instruction = (
            "You are a virtual assistant for Saudi Vision 2030. Use the following information to answer the question. "
            "If you don't know the answer, honestly say you don't know."
        )
    
    # Combine retrieved contexts
    context_text = "\n\n".join([f"Document: {ctx['content']}" for ctx in contexts])
    
    # Format the prompt for ALLaM instruction format
    prompt = f"""<s>[INST] {instruction}

Context:
{context_text}

Question: {query} [/INST]</s>"""
    
    try:
        # Generate response with appropriate parameters for ALLaM
        inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
        
        # Generate with appropriate parameters
        outputs = model.generate(
            inputs.input_ids,
            attention_mask=inputs.attention_mask,
            max_new_tokens=512,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            repetition_penalty=1.1
        )
        
        # Decode the response
        full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Extract just the answer part (after the instruction)
        response = full_output.split("[/INST]")[-1].strip()
        
        # If response is empty for some reason, return the full output
        if not response:
            response = full_output
            
        return response
        
    except Exception as e:
        print(f"Error during generation: {e}")
        # Fallback response
        return "I apologize, but I encountered an error while generating a response."

def process_pdf_files(pdf_files):
    """Process PDF files and create documents"""
    documents = []
    
    for pdf_file in pdf_files:
        try:
            # Save the uploaded file temporarily
            temp_path = f"temp_{pdf_file.name}"
            with open(temp_path, "wb") as f:
                f.write(pdf_file.read())
            
            # Extract text
            text = ""
            with open(temp_path, 'rb') as file:
                reader = PyPDF2.PdfReader(file)
                for page in reader.pages:
                    page_text = page.extract_text()
                    if page_text:
                        text += page_text + "\n\n"
            
            # Clean up
            os.remove(temp_path)
            
            if text.strip():  # If we got some text
                doc = Document(
                    page_content=text,
                    metadata={"source": pdf_file.name, "filename": pdf_file.name}
                )
                documents.append(doc)
                print(f"Successfully processed: {pdf_file.name}")
            else:
                print(f"Warning: No text extracted from {pdf_file.name}")
        except Exception as e:
            print(f"Error processing {pdf_file.name}: {e}")
    
    print(f"Processed {len(documents)} PDF documents")
    return documents

def create_vector_store(documents):
    """Create a vector store from documents"""
    # Text splitter for breaking documents into chunks
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=500,
        chunk_overlap=50,
        separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
    )
    
    # Split documents into chunks
    chunks = []
    for doc in documents:
        doc_chunks = text_splitter.split_text(doc.page_content)
        # Preserve metadata for each chunk
        chunks.extend([
            Document(page_content=chunk, metadata=doc.metadata)
            for chunk in doc_chunks
        ])
    
    print(f"Created {len(chunks)} chunks from {len(documents)} documents")
    
    # Create embedding function
    embedding_function = HuggingFaceEmbeddings(
        model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
    )
    
    # Create FAISS index
    vector_store = FAISS.from_documents(chunks, embedding_function)
    return vector_store

# Variables to store state
model = None
tokenizer = None
assistant = None

# Load the model and tokenizer
@spaces.GPU  # Add decorator for GPU usage
def load_model_and_tokenizer():
    global model, tokenizer
    
    if model is not None and tokenizer is not None:
        return "Model already loaded"
    
    model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
    print(f"Loading model: {model_name}")

    try:
        # First attempt with AutoTokenizer
        tokenizer = AutoTokenizer.from_pretrained(
            model_name,
            trust_remote_code=True,
            use_fast=False
        )
        
        # Load model with appropriate settings for ALLaM
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.bfloat16,  # Use bfloat16 for better compatibility
            trust_remote_code=True,
            device_map="auto",
        )
        
        return "Model loaded successfully with AutoTokenizer!"
        
    except Exception as e:
        error_msg = f"First loading attempt failed: {e}"
        print(error_msg)
        
        try:
            # Try with specific tokenizer class if the first attempt fails
            from transformers import LlamaTokenizer
            
            tokenizer = LlamaTokenizer.from_pretrained(model_name)
            model = AutoModelForCausalLM.from_pretrained(
                model_name,
                torch_dtype=torch.float16,
                trust_remote_code=True,
                device_map="auto",
            )
            
            return "Model loaded successfully with LlamaTokenizer!"
        except Exception as e2:
            return f"Both loading attempts failed. Error 1: {e}. Error 2: {e2}"

# Gradio Interface Functions
def process_pdfs(pdf_files):
    if not pdf_files:
        return "No files uploaded. Please upload PDF documents about Vision 2030."
    
    documents = process_pdf_files(pdf_files)
    
    if not documents:
        return "Failed to extract text from the uploaded PDFs."
    
    global assistant, model, tokenizer
    
    # Ensure model is loaded
    if model is None or tokenizer is None:
        load_status = load_model_and_tokenizer()
        if "successfully" not in load_status.lower():
            return f"Model loading failed: {load_status}"
    
    # Create vector store
    vector_store = create_vector_store(documents)
    
    # Initialize assistant
    assistant = Vision2030Assistant(model, tokenizer, vector_store)
    
    return f"Successfully processed {len(documents)} documents. The assistant is ready to use!"

@spaces.GPU  # Add decorator for GPU usage
def answer_query(message, history):
    global assistant
    
    if assistant is None:
        return "Please upload and process Vision 2030 PDF documents first."
    
    response = assistant.answer(message)
    return response

def reset_chat():
    global assistant
    
    if assistant is None:
        return "No active conversation to reset."
    
    reset_message = assistant.reset_conversation()
    return reset_message

# Create Gradio interface
with gr.Blocks(title="Vision 2030 Virtual Assistant") as demo:
    gr.Markdown("# Vision 2030 Virtual Assistant")
    gr.Markdown("Ask questions about Saudi Vision 2030 goals, projects, and progress in Arabic or English.")
    
    with gr.Tab("Setup"):
        gr.Markdown("## Step 1: Load the Model")
        load_btn = gr.Button("Load ALLaM-7B Model", variant="primary")
        load_output = gr.Textbox(label="Load Status")
        load_btn.click(load_model_and_tokenizer, inputs=[], outputs=load_output)
        
        gr.Markdown("## Step 2: Upload Vision 2030 Documents")
        pdf_files = gr.File(file_types=[".pdf"], file_count="multiple", label="Upload PDF Documents")
        process_btn = gr.Button("Process Documents", variant="primary")
        process_output = gr.Textbox(label="Processing Status")
        process_btn.click(process_pdfs, inputs=[pdf_files], outputs=process_output)
    
    with gr.Tab("Chat"):
        chatbot = gr.Chatbot(label="Conversation")
        message = gr.Textbox(
            label="Ask a question about Vision 2030 (in Arabic or English)",
            placeholder="What are the main goals of Vision 2030?",
            lines=2
        )
        submit_btn = gr.Button("Submit", variant="primary")
        reset_btn = gr.Button("Reset Conversation")
        
        gr.Markdown("### Example Questions")
        with gr.Row():
            with gr.Column():
                gr.Markdown("**English Questions:**")
                en_examples = gr.Examples(
                    examples=[
                        "What is Saudi Vision 2030?",
                        "What are the economic goals of Vision 2030?",
                        "How does Vision 2030 support women's empowerment?",
                        "What environmental initiatives are part of Vision 2030?",
                        "What is the role of the Public Investment Fund in Vision 2030?"
                    ],
                    inputs=message
                )
            
            with gr.Column():
                gr.Markdown("**Arabic Questions:**")
                ar_examples = gr.Examples(
                    examples=[
                        "ما هي رؤية السعودية 2030؟",
                        "ما هي الأهداف الاقتصادية لرؤية 2030؟",
                        "كيف تدعم رؤية 2030 تمكين المرأة السعودية؟",
                        "ما هي مبادرات رؤية 2030 للحفاظ على البيئة؟",
                        "ما هي استراتيجية صندوق الاستثمارات العامة في رؤية 2030؟"
                    ],
                    inputs=message
                )
        
        reset_output = gr.Textbox(label="Reset Status", visible=False)
        submit_btn.click(answer_query, inputs=[message, chatbot], outputs=[chatbot])
        message.submit(answer_query, inputs=[message, chatbot], outputs=[chatbot])
        reset_btn.click(reset_chat, inputs=[], outputs=[reset_output])
        reset_btn.click(lambda: None, inputs=[], outputs=[chatbot], postprocess=False)

# Launch the app
demo.launch()