abdull4h's picture
Update app.py
ae5e187 verified
raw
history blame
12.4 kB
import gradio as gr
import time
import logging
import os
import re
from datetime import datetime
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sentence_transformers import SentenceTransformer, util
import faiss
import torch
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import PyPDF2
import io
# Configure logging for debugging and monitoring
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger('Vision2030Assistant')
# Check for GPU availability
has_gpu = torch.cuda.is_available()
logger.info(f"GPU available: {has_gpu}")
class Vision2030Assistant:
def __init__(self):
"""Initialize the assistant with enhanced features"""
logger.info("Initializing Vision 2030 Assistant...")
# Load models with error handling
self.load_embedding_models()
self.load_language_model()
# Initialize knowledge base and indices
self._create_knowledge_base()
self._create_indices()
# Sample evaluation data
self._create_sample_eval_data()
# Metrics storage
self.metrics = {"response_times": [], "user_ratings": [], "factual_accuracy": []}
# Session management
self.session_history = {}
# PDF content flag
self.has_pdf_content = False
logger.info("Assistant initialized successfully")
@spaces.GPU
def load_embedding_models(self):
"""Load embedding models with fallback"""
try:
self.arabic_embedder = SentenceTransformer('CAMeL-Lab/bert-base-arabic-camelbert-ca')
self.english_embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
if has_gpu:
self.arabic_embedder = self.arabic_embedder.to('cuda')
self.english_embedder = self.english_embedder.to('cuda')
logger.info("Embedding models loaded successfully")
except Exception as e:
logger.error(f"Failed to load embedding models: {e}")
self._fallback_embedding()
def _fallback_embedding(self):
"""Fallback to simple embedding if model loading fails"""
logger.warning("Using fallback embedding method")
def simple_embed(text):
import hashlib
hash_obj = hashlib.md5(text.encode())
np.random.seed(int(hash_obj.hexdigest(), 16) % 2**32)
return np.random.randn(384).astype(np.float32)
class SimpleEmbedder:
def encode(self, text):
return simple_embed(text)
self.arabic_embedder = SimpleEmbedder()
self.english_embedder = SimpleEmbedder()
@spaces.GPU
def load_language_model(self):
"""Load language model for advanced response generation"""
try:
self.tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
self.model = AutoModelForCausalLM.from_pretrained("distilgpt2")
if has_gpu:
self.model = self.model.to('cuda')
self.generator = pipeline('text-generation', model=self.model, tokenizer=self.tokenizer, device=0 if has_gpu else -1)
logger.info("Language model loaded successfully")
except Exception as e:
logger.error(f"Failed to load language model: {e}")
self.generator = None
def _create_knowledge_base(self):
"""Create initial knowledge base"""
self.english_texts = [
"Vision 2030 is Saudi Arabia's strategic framework to reduce dependence on oil, diversify the economy, and develop public sectors.",
"The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation.",
"NEOM is a planned smart city in Tabuk Province, a key Vision 2030 project."
]
self.arabic_texts = [
"رؤية 2030 هي إطار استراتيجي لتقليل الاعتماد على النفط وتنويع الاقتصاد.",
"الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح.",
"نيوم مدينة ذكية مخططة في تبوك، مشروع رئيسي لرؤية 2030."
]
self.pdf_english_texts = []
self.pdf_arabic_texts = []
@spaces.GPU
def _create_indices(self):
"""Create scalable FAISS indices"""
try:
# English index with IVF for scalability
english_vectors = [self.english_embedder.encode(text) for text in self.english_texts]
dim = len(english_vectors[0])
nlist = max(1, len(english_vectors) // 10)
quantizer = faiss.IndexFlatL2(dim)
self.english_index = faiss.IndexIVFFlat(quantizer, dim, nlist)
self.english_index.train(np.array(english_vectors))
self.english_index.add(np.array(english_vectors))
# Arabic index
arabic_vectors = [self.arabic_embedder.encode(text) for text in self.arabic_texts]
self.arabic_index = faiss.IndexIVFFlat(quantizer, dim, nlist)
self.arabic_index.train(np.array(arabic_vectors))
self.arabic_index.add(np.array(arabic_vectors))
logger.info("FAISS indices created successfully")
except Exception as e:
logger.error(f"Error creating indices: {e}")
def _create_sample_eval_data(self):
"""Sample evaluation data"""
self.eval_data = [
{"question": "What are the key pillars of Vision 2030?", "lang": "en", "reference": "The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation."},
{"question": "ما هي الركائز الرئيسية لرؤية 2030؟", "lang": "ar", "reference": "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح."}
]
@spaces.GPU
def retrieve_context(self, query, lang, session_id):
"""Retrieve context with session history integration"""
try:
# Incorporate session history
history = self.session_history.get(session_id, [])
history_context = " ".join([f"Q: {q} A: {a}" for q, a in history[-2:]]) # Last 2 interactions
# Embed query
embedder = self.arabic_embedder if lang == "ar" else self.english_embedder
query_vec = embedder.encode(query)
# Search appropriate index
index = self.pdf_arabic_index if (lang == "ar" and self.has_pdf_content) else \
self.pdf_english_index if (lang == "en" and self.has_pdf_content) else \
self.arabic_index if lang == "ar" else self.english_index
texts = self.pdf_arabic_texts if (lang == "ar" and self.has_pdf_content) else \
self.pdf_english_texts if (lang == "en" and self.has_pdf_content) else \
self.arabic_texts if lang == "ar" else self.english_texts
D, I = index.search(np.array([query_vec]), k=2)
context = "\n".join([texts[i] for i in I[0] if i >= 0]) + f"\nHistory: {history_context}"
return context if context.strip() else "No relevant information found."
except Exception as e:
logger.error(f"Retrieval error: {e}")
return "Error retrieving context."
@spaces.GPU
def generate_response(self, query, session_id):
"""Generate advanced responses with error handling"""
if not query.strip():
return "Please enter a valid question."
start_time = time.time()
try:
lang = "ar" if any('\u0600' <= c <= '\u06FF' for c in query) else "en"
context = self.retrieve_context(query, lang, session_id)
if "Error" in context or "No relevant" in context:
reply = context
elif self.generator:
prompt = f"Context: {context}\nQuestion: {query}\nAnswer:"
response = self.generator(prompt, max_length=150, num_return_sequences=1, do_sample=True, temperature=0.7)
reply = response[0]['generated_text'].split("Answer:")[-1].strip()
else:
reply = context # Fallback
# Update session history
self.session_history.setdefault(session_id, []).append((query, reply))
self.metrics["response_times"].append(time.time() - start_time)
return reply
except Exception as e:
logger.error(f"Response generation error: {e}")
return "Sorry, an error occurred. Please try again."
def evaluate_factual_accuracy(self, response, reference):
"""Evaluate using semantic similarity"""
try:
embedder = self.english_embedder # Assuming reference is in English; extend for Arabic if needed
response_vec = embedder.encode(response)
reference_vec = embedder.encode(reference)
similarity = util.cos_sim(response_vec, reference_vec).item()
return similarity
except Exception as e:
logger.error(f"Evaluation error: {e}")
return 0.0
@spaces.GPU
def process_pdf(self, file):
"""Process PDF with scalability and error handling"""
if not file:
return "Please upload a PDF file."
try:
pdf_reader = PyPDF2.PdfReader(io.BytesIO(file))
text = "".join([page.extract_text() or "" for page in pdf_reader.pages])
if not text.strip():
return "No extractable text found in PDF."
# Chunk text for scalability
chunks = [text[i:i+300] for i in range(0, len(text), 300)]
self.pdf_english_texts = [c for c in chunks if not any('\u0600' <= char <= '\u06FF' for char in c)]
self.pdf_arabic_texts = [c for c in chunks if any('\u0600' <= char <= '\u06FF' for char in c)]
# Batch process embeddings
batch_size = 32
for lang, texts, embedder in [("en", self.pdf_english_texts, self.english_embedder),
("ar", self.pdf_arabic_texts, self.arabic_embedder)]:
if texts:
vectors = []
for i in range(0, len(texts), batch_size):
batch = texts[i:i+batch_size]
vectors.extend(embedder.encode(batch))
dim = len(vectors[0])
nlist = max(1, len(vectors) // 10)
quantizer = faiss.IndexFlatL2(dim)
index = faiss.IndexIVFFlat(quantizer, dim, nlist)
index.train(np.array(vectors))
index.add(np.array(vectors))
setattr(self, f"pdf_{lang}_index", index)
self.has_pdf_content = True
return f"PDF processed: {len(self.pdf_english_texts)} English, {len(self.pdf_arabic_texts)} Arabic chunks."
except Exception as e:
logger.error(f"PDF processing error: {e}")
return f"Error processing PDF: {e}"
# Gradio Interface
def create_interface():
assistant = Vision2030Assistant()
def chat(query, history, session_id):
reply = assistant.generate_response(query, session_id)
history.append((query, reply))
return history, ""
with gr.Blocks() as demo:
gr.Markdown("# Vision 2030 Virtual Assistant")
session_id = gr.State(value="user1") # Simple session ID; enhance with authentication
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Ask a question")
submit = gr.Button("Submit")
pdf_upload = gr.File(label="Upload PDF", type="binary")
upload_status = gr.Textbox(label="Upload Status")
submit.click(chat, [msg, chatbot, session_id], [chatbot, msg])
pdf_upload.upload(assistant.process_pdf, pdf_upload, upload_status)
return demo
demo = create_interface()
demo.launch()