abdull4h's picture
Update app.py
cf43777 verified
raw
history blame
36.2 kB
# Minimal working Vision 2030 Virtual Assistant
import gradio as gr
import time
import logging
import os
import re
from datetime import datetime
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_fscore_support, accuracy_score
import PyPDF2
import io
import json
from langdetect import detect
from sentence_transformers import SentenceTransformer
import faiss
import torch
import spaces
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger('vision2030_assistant')
# Check for GPU availability
has_gpu = torch.cuda.is_available()
logger.info(f"GPU available: {has_gpu}")
class Vision2030Assistant:
def __init__(self):
"""Initialize the Vision 2030 Assistant with basic knowledge"""
logger.info("Initializing Vision 2030 Assistant...")
# Initialize embedding models
self.load_embedding_models()
# Create data
self._create_knowledge_base()
self._create_indices()
# Create sample evaluation data
self._create_sample_eval_data()
# Initialize metrics
self.metrics = {
"response_times": [],
"user_ratings": [],
"factual_accuracy": []
}
self.response_history = []
# Flag for PDF content
self.has_pdf_content = False
logger.info("Vision 2030 Assistant initialized successfully")
@spaces.GPU
def load_embedding_models(self):
"""Load embedding models for retrieval"""
logger.info("Loading embedding models...")
try:
# Load embedding models
self.arabic_embedder = SentenceTransformer('CAMeL-Lab/bert-base-arabic-camelbert-ca')
self.english_embedder = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Move to GPU if available
if has_gpu:
self.arabic_embedder = self.arabic_embedder.to('cuda')
self.english_embedder = self.english_embedder.to('cuda')
logger.info("Models moved to GPU")
logger.info("Embedding models loaded successfully")
except Exception as e:
logger.error(f"Error loading embedding models: {str(e)}")
self._create_fallback_embedders()
def _create_fallback_embedders(self):
"""Create fallback embedding methods if model loading fails"""
logger.warning("Using fallback embedding methods")
# Simple fallback using character-level encoding
def simple_encode(text, dim=384):
import hashlib
# Create a hash of the text
hash_object = hashlib.md5(text.encode())
# Use the hash to seed a random number generator
np.random.seed(int(hash_object.hexdigest(), 16) % 2**32)
# Generate a random vector
return np.random.randn(dim).astype(np.float32)
# Create embedding function objects
class SimpleEmbedder:
def __init__(self, dim=384):
self.dim = dim
def encode(self, text):
return simple_encode(text, self.dim)
self.arabic_embedder = SimpleEmbedder()
self.english_embedder = SimpleEmbedder()
def _create_knowledge_base(self):
"""Create knowledge base with Vision 2030 information"""
logger.info("Creating Vision 2030 knowledge base")
# English texts
self.english_texts = [
"Vision 2030 is Saudi Arabia's strategic framework to reduce dependence on oil, diversify the economy, and develop public sectors.",
"The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation.",
"Vision 2030 targets increasing the private sector's contribution to GDP from 40% to 65%.",
"NEOM is a planned cross-border smart city in the Tabuk Province of northwestern Saudi Arabia, a key project of Vision 2030.",
"Vision 2030 aims to increase women's participation in the workforce from 22% to 30%.",
"The Red Sea Project is a Vision 2030 initiative to develop luxury tourism destinations across 50 islands off Saudi Arabia's Red Sea coast.",
"Qiddiya is an entertainment mega-project being built in Riyadh as part of Vision 2030.",
"The real wealth of Saudi Arabia, as emphasized in Vision 2030, is its people, particularly the youth.",
"Saudi Arabia aims to strengthen its position as a global gateway by leveraging its strategic location between Asia, Europe, and Africa.",
"Vision 2030 aims to have at least five Saudi universities among the top 200 universities in international rankings.",
"Vision 2030 sets a target of having at least 10 Saudi sites registered on the UNESCO World Heritage List.",
"Vision 2030 aims to increase the capacity to welcome Umrah visitors from 8 million to 30 million annually.",
"Vision 2030 includes multiple initiatives to strengthen Saudi national identity including cultural programs and heritage preservation.",
"Vision 2030 aims to increase non-oil government revenue from SAR 163 billion to SAR 1 trillion."
]
# Arabic texts
self.arabic_texts = [
"رؤية 2030 هي الإطار الاستراتيجي للمملكة العربية السعودية للحد من الاعتماد على النفط وتنويع الاقتصاد وتطوير القطاعات العامة.",
"الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح.",
"تستهدف رؤية 2030 زيادة مساهمة القطاع الخاص في الناتج المحلي الإجمالي من 40٪ إلى 65٪.",
"نيوم هي مدينة ذكية مخططة عبر الحدود في مقاطعة تبوك شمال غرب المملكة العربية السعودية، وهي مشروع رئيسي من رؤية 2030.",
"تهدف رؤية 2030 إلى زيادة مشاركة المرأة في القوى العاملة من 22٪ إلى 30٪.",
"مشروع البحر الأحمر هو مبادرة رؤية 2030 لتطوير وجهات سياحية فاخرة عبر 50 جزيرة قبالة ساحل البحر الأحمر السعودي.",
"القدية هي مشروع ترفيهي ضخم يتم بناؤه في الرياض كجزء من رؤية 2030.",
"الثروة الحقيقية للمملكة العربية السعودية، كما أكدت رؤية 2030، هي شعبها، وخاصة الشباب.",
"تهدف المملكة العربية السعودية إلى تعزيز مكانتها كبوابة عالمية من خلال الاستفادة من موقعها الاستراتيجي بين آسيا وأوروبا وأفريقيا.",
"تهدف رؤية 2030 إلى أن تكون خمس جامعات سعودية على الأقل ضمن أفضل 200 جامعة في التصنيفات الدولية.",
"تضع رؤية 2030 هدفًا بتسجيل ما لا يقل عن 10 مواقع سعودية في قائمة التراث العالمي لليونسكو.",
"تهدف رؤية 2030 إلى زيادة القدرة على استقبال المعتمرين من 8 ملايين إلى 30 مليون معتمر سنويًا.",
"تتضمن رؤية 2030 مبادرات متعددة لتعزيز الهوية الوطنية السعودية بما في ذلك البرامج الثقافية والحفاظ على التراث.",
"تهدف رؤية 2030 إلى زيادة الإيرادات الحكومية غير النفطية من 163 مليار ريال سعودي إلى 1 تريليون ريال سعودي."
]
# Initialize PDF content containers
self.pdf_english_texts = []
self.pdf_arabic_texts = []
logger.info(f"Created knowledge base: {len(self.english_texts)} English, {len(self.arabic_texts)} Arabic texts")
@spaces.GPU
def _create_indices(self):
"""Create FAISS indices for text retrieval"""
logger.info("Creating FAISS indices for text retrieval")
try:
# Process and embed English texts
self.english_vectors = []
for text in self.english_texts:
try:
if has_gpu and hasattr(self.english_embedder, 'to'):
with torch.no_grad():
vec = self.english_embedder.encode(text)
else:
vec = self.english_embedder.encode(text)
self.english_vectors.append(vec)
except Exception as e:
logger.error(f"Error encoding English text: {str(e)}")
# Use a random vector as fallback
self.english_vectors.append(np.random.randn(384).astype(np.float32))
# Create English index
if self.english_vectors:
self.english_index = faiss.IndexFlatL2(len(self.english_vectors[0]))
self.english_index.add(np.array(self.english_vectors))
logger.info(f"Created English index with {len(self.english_vectors)} vectors")
else:
logger.warning("No English texts to index")
# Process and embed Arabic texts
self.arabic_vectors = []
for text in self.arabic_texts:
try:
if has_gpu and hasattr(self.arabic_embedder, 'to'):
with torch.no_grad():
vec = self.arabic_embedder.encode(text)
else:
vec = self.arabic_embedder.encode(text)
self.arabic_vectors.append(vec)
except Exception as e:
logger.error(f"Error encoding Arabic text: {str(e)}")
# Use a random vector as fallback
self.arabic_vectors.append(np.random.randn(384).astype(np.float32))
# Create Arabic index
if self.arabic_vectors:
self.arabic_index = faiss.IndexFlatL2(len(self.arabic_vectors[0]))
self.arabic_index.add(np.array(self.arabic_vectors))
logger.info(f"Created Arabic index with {len(self.arabic_vectors)} vectors")
else:
logger.warning("No Arabic texts to index")
# Create PDF indices if PDF content exists
if hasattr(self, 'pdf_english_texts') and self.pdf_english_texts:
self._create_pdf_indices()
except Exception as e:
logger.error(f"Error creating FAISS indices: {str(e)}")
def _create_pdf_indices(self):
"""Create indices for PDF content"""
if not self.pdf_english_texts and not self.pdf_arabic_texts:
return
logger.info("Creating indices for PDF content")
try:
# Process and embed English PDF texts
if self.pdf_english_texts:
self.pdf_english_vectors = []
for text in self.pdf_english_texts:
try:
if has_gpu and hasattr(self.english_embedder, 'to'):
with torch.no_grad():
vec = self.english_embedder.encode(text)
else:
vec = self.english_embedder.encode(text)
self.pdf_english_vectors.append(vec)
except Exception as e:
logger.error(f"Error encoding English PDF text: {str(e)}")
continue
if self.pdf_english_vectors:
self.pdf_english_index = faiss.IndexFlatL2(len(self.pdf_english_vectors[0]))
self.pdf_english_index.add(np.array(self.pdf_english_vectors))
logger.info(f"Created English PDF index with {len(self.pdf_english_vectors)} vectors")
# Process and embed Arabic PDF texts
if self.pdf_arabic_texts:
self.pdf_arabic_vectors = []
for text in self.pdf_arabic_texts:
try:
if has_gpu and hasattr(self.arabic_embedder, 'to'):
with torch.no_grad():
vec = self.arabic_embedder.encode(text)
else:
vec = self.arabic_embedder.encode(text)
self.pdf_arabic_vectors.append(vec)
except Exception as e:
logger.error(f"Error encoding Arabic PDF text: {str(e)}")
continue
if self.pdf_arabic_vectors:
self.pdf_arabic_index = faiss.IndexFlatL2(len(self.pdf_arabic_vectors[0]))
self.pdf_arabic_index.add(np.array(self.pdf_arabic_vectors))
logger.info(f"Created Arabic PDF index with {len(self.pdf_arabic_vectors)} vectors")
# Set flag to indicate PDF content is available
self.has_pdf_content = True
except Exception as e:
logger.error(f"Error creating PDF indices: {str(e)}")
def _create_sample_eval_data(self):
"""Create sample evaluation data with ground truth"""
self.eval_data = [
{
"question": "What are the key pillars of Vision 2030?",
"lang": "en",
"reference_answer": "The key pillars of Vision 2030 are a vibrant society, a thriving economy, and an ambitious nation."
},
{
"question": "ما هي الركائز الرئيسية لرؤية 2030؟",
"lang": "ar",
"reference_answer": "الركائز الرئيسية لرؤية 2030 هي مجتمع حيوي، واقتصاد مزدهر، ووطن طموح."
},
{
"question": "What is NEOM?",
"lang": "en",
"reference_answer": "NEOM is a planned cross-border smart city in the Tabuk Province of northwestern Saudi Arabia, a key project of Vision 2030."
},
{
"question": "ما هو مشروع البحر الأحمر؟",
"lang": "ar",
"reference_answer": "مشروع البحر الأحمر هو مبادرة رؤية 2030 لتطوير وجهات سياحية فاخرة عبر 50 جزيرة قبالة ساحل البحر الأحمر السعودي."
},
{
"question": "ما هي الثروة الحقيقية التي تعتز بها المملكة كما وردت في الرؤية؟",
"lang": "ar",
"reference_answer": "الثروة الحقيقية للمملكة العربية السعودية، كما أكدت رؤية 2030، هي شعبها، وخاصة الشباب."
},
{
"question": "كيف تسعى المملكة إلى تعزيز مكانتها كبوابة للعالم؟",
"lang": "ar",
"reference_answer": "تهدف المملكة العربية السعودية إلى تعزيز مكانتها كبوابة عالمية من خلال الاستفادة من موقعها الاستراتيجي بين آسيا وأوروبا وأفريقيا."
}
]
logger.info(f"Created {len(self.eval_data)} sample evaluation examples")
@spaces.GPU
def retrieve_context(self, query, lang):
"""Retrieve relevant context with priority to PDF content"""
start_time = time.time()
try:
# First check if we have PDF content
if self.has_pdf_content:
# Try to retrieve from PDF content first
if lang == "ar" and hasattr(self, 'pdf_arabic_index') and hasattr(self, 'pdf_arabic_vectors') and len(self.pdf_arabic_vectors) > 0:
if has_gpu and hasattr(self.arabic_embedder, 'to'):
with torch.no_grad():
query_vec = self.arabic_embedder.encode(query)
else:
query_vec = self.arabic_embedder.encode(query)
D, I = self.pdf_arabic_index.search(np.array([query_vec]), k=2)
# If we found good matches in the PDF
if D[0][0] < 1.5: # Threshold for relevance
context = "\n".join([self.pdf_arabic_texts[i] for i in I[0] if i < len(self.pdf_arabic_texts) and i >= 0])
if context.strip():
logger.info("Retrieved context from PDF (Arabic)")
return context
elif lang == "en" and hasattr(self, 'pdf_english_index') and hasattr(self, 'pdf_english_vectors') and len(self.pdf_english_vectors) > 0:
if has_gpu and hasattr(self.english_embedder, 'to'):
with torch.no_grad():
query_vec = self.english_embedder.encode(query)
else:
query_vec = self.english_embedder.encode(query)
D, I = self.pdf_english_index.search(np.array([query_vec]), k=2)
# If we found good matches in the PDF
if D[0][0] < 1.5: # Threshold for relevance
context = "\n".join([self.pdf_english_texts[i] for i in I[0] if i < len(self.pdf_english_texts) and i >= 0])
if context.strip():
logger.info("Retrieved context from PDF (English)")
return context
# Fall back to the pre-built knowledge base
if lang == "ar":
if has_gpu and hasattr(self.arabic_embedder, 'to'):
with torch.no_grad():
query_vec = self.arabic_embedder.encode(query)
else:
query_vec = self.arabic_embedder.encode(query)
D, I = self.arabic_index.search(np.array([query_vec]), k=2)
context = "\n".join([self.arabic_texts[i] for i in I[0] if i < len(self.arabic_texts) and i >= 0])
else:
if has_gpu and hasattr(self.english_embedder, 'to'):
with torch.no_grad():
query_vec = self.english_embedder.encode(query)
else:
query_vec = self.english_embedder.encode(query)
D, I = self.english_index.search(np.array([query_vec]), k=2)
context = "\n".join([self.english_texts[i] for i in I[0] if i < len(self.english_texts) and i >= 0])
retrieval_time = time.time() - start_time
logger.info(f"Retrieved context in {retrieval_time:.2f}s")
return context
except Exception as e:
logger.error(f"Error retrieving context: {str(e)}")
return ""
def generate_response(self, user_input):
"""Generate responses by prioritizing PDF content over pre-defined answers"""
if not user_input or user_input.strip() == "":
return ""
start_time = time.time()
try:
# Detect language
try:
lang = detect(user_input)
if lang != "ar":
lang = "en"
except:
lang = "en"
# Always try to retrieve from PDF first if available
if hasattr(self, 'has_pdf_content') and self.has_pdf_content:
context = self.retrieve_context(user_input, lang)
# If we found content in the PDF, use it directly
if context and context.strip():
logger.info("Answering from PDF content")
reply = context
# Record metrics
response_time = time.time() - start_time
self.metrics["response_times"].append(response_time)
# Store the interaction
self.response_history.append({
"timestamp": datetime.now().isoformat(),
"user_input": user_input,
"response": reply,
"language": lang,
"response_time": response_time,
"source": "PDF document"
})
return reply
def evaluate_factual_accuracy(self, response, reference):
"""Simple evaluation of factual accuracy by keyword matching"""
# This is a simplified approach - in production, use more sophisticated methods
keywords_reference = set(re.findall(r'\b\w+\b', reference.lower()))
keywords_response = set(re.findall(r'\b\w+\b', response.lower()))
# Remove common stopwords (simplified approach)
english_stopwords = {"the", "is", "a", "an", "and", "or", "of", "to", "in", "for", "with", "by", "on", "at"}
arabic_stopwords = {"في", "من", "إلى", "على", "و", "هي", "هو", "عن", "مع"}
keywords_reference = {w for w in keywords_reference if w not in english_stopwords and w not in arabic_stopwords}
keywords_response = {w for w in keywords_response if w not in english_stopwords and w not in arabic_stopwords}
common_keywords = keywords_reference.intersection(keywords_response)
if len(keywords_reference) > 0:
accuracy = len(common_keywords) / len(keywords_reference)
else:
accuracy = 0
return accuracy
@spaces.GPU
def evaluate_on_test_set(self):
"""Evaluate the assistant on the test set"""
logger.info("Running evaluation on test set")
eval_results = []
for example in self.eval_data:
# Generate response
response = self.generate_response(example["question"])
# Calculate factual accuracy
accuracy = self.evaluate_factual_accuracy(response, example["reference_answer"])
eval_results.append({
"question": example["question"],
"reference": example["reference_answer"],
"response": response,
"factual_accuracy": accuracy
})
self.metrics["factual_accuracy"].append(accuracy)
# Calculate average factual accuracy
avg_accuracy = sum(self.metrics["factual_accuracy"]) / len(self.metrics["factual_accuracy"]) if self.metrics["factual_accuracy"] else 0
avg_response_time = sum(self.metrics["response_times"]) / len(self.metrics["response_times"]) if self.metrics["response_times"] else 0
results = {
"average_factual_accuracy": avg_accuracy,
"average_response_time": avg_response_time,
"detailed_results": eval_results
}
logger.info(f"Evaluation results: Factual accuracy = {avg_accuracy:.2f}, Avg response time = {avg_response_time:.2f}s")
return results
def visualize_evaluation_results(self, results):
"""Generate visualization of evaluation results"""
# Create a DataFrame from the detailed results
df = pd.DataFrame(results["detailed_results"])
# Create the figure for visualizations
fig = plt.figure(figsize=(12, 8))
# Bar chart of factual accuracy by question
plt.subplot(2, 1, 1)
bars = plt.bar(range(len(df)), df["factual_accuracy"], color="skyblue")
plt.axhline(y=results["average_factual_accuracy"], color='r', linestyle='-',
label=f"Avg: {results['average_factual_accuracy']:.2f}")
plt.xlabel("Question Index")
plt.ylabel("Factual Accuracy")
plt.title("Factual Accuracy by Question")
plt.ylim(0, 1.1)
plt.legend()
# Add language information
df["language"] = df["question"].apply(lambda x: "Arabic" if detect(x) == "ar" else "English")
# Group by language
lang_accuracy = df.groupby("language")["factual_accuracy"].mean()
# Bar chart of accuracy by language
plt.subplot(2, 1, 2)
lang_bars = plt.bar(lang_accuracy.index, lang_accuracy.values, color=["lightblue", "lightgreen"])
plt.axhline(y=results["average_factual_accuracy"], color='r', linestyle='-',
label=f"Overall: {results['average_factual_accuracy']:.2f}")
plt.xlabel("Language")
plt.ylabel("Average Factual Accuracy")
plt.title("Factual Accuracy by Language")
plt.ylim(0, 1.1)
# Add value labels
for i, v in enumerate(lang_accuracy):
plt.text(i, v + 0.05, f"{v:.2f}", ha='center')
plt.tight_layout()
return fig
def record_user_feedback(self, user_input, response, rating, feedback_text=""):
"""Record user feedback for a response"""
feedback = {
"timestamp": datetime.now().isoformat(),
"user_input": user_input,
"response": response,
"rating": rating,
"feedback_text": feedback_text
}
self.metrics["user_ratings"].append(rating)
# In a production system, store this in a database
logger.info(f"Recorded user feedback: rating={rating}")
return True
@spaces.GPU
def process_pdf(self, file):
"""Process uploaded PDF with focus on extracting all content for answering questions"""
if file is None:
return "No file uploaded. Please select a PDF file."
try:
logger.info("Processing uploaded PDF document")
# Convert bytes to file-like object
file_stream = io.BytesIO(file)
# Use PyPDF2 to read the file content
reader = PyPDF2.PdfReader(file_stream)
# Extract text from the PDF
full_text = ""
for page_num in range(len(reader.pages)):
try:
page = reader.pages[page_num]
extracted_text = page.extract_text()
if extracted_text:
full_text += extracted_text + "\n"
except Exception as e:
logger.error(f"Error extracting text from page {page_num}: {str(e)}")
if not full_text.strip():
return "The uploaded PDF doesn't contain extractable text. Please try another file."
# First remove existing PDF content
self.pdf_english_texts = []
self.pdf_arabic_texts = []
self.has_pdf_content = False
# Process the extracted text into meaningful chunks
# Default chunk size of ~200-300 characters for better semantic indexing
chunks = []
# Using sentences as more meaningful units than arbitrary chunks
sentences = re.split(r'(?<=[.!?])\s+', full_text)
current_chunk = ""
for sentence in sentences:
if not sentence.strip():
continue
# If adding this sentence would make chunk too big, save current and start new
if len(current_chunk) + len(sentence) > 300:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence
else:
current_chunk += " " + sentence if current_chunk else sentence
# Add the last chunk if any
if current_chunk:
chunks.append(current_chunk.strip())
# Filter out very short chunks (likely noise)
chunks = [chunk for chunk in chunks if len(chunk.strip()) > 30]
# Categorize by language with focus on accurate detection
english_chunks = []
arabic_chunks = []
for chunk in chunks:
try:
# Check for Arabic characters first (more reliable)
if any('\u0600' <= c <= '\u06FF' for c in chunk):
arabic_chunks.append(chunk)
else:
# Use language detection as backup
lang = detect(chunk)
if lang == "ar":
arabic_chunks.append(chunk)
else:
english_chunks.append(chunk)
except:
# If detection fails, check for Arabic characters
if any('\u0600' <= c <= '\u06FF' for c in chunk):
arabic_chunks.append(chunk)
else:
english_chunks.append(chunk)
# Replace PDF content with new content
self.pdf_english_texts = english_chunks
self.pdf_arabic_texts = arabic_chunks
# Create high-quality embeddings - this is critical for accurate retrieval
self._create_pdf_indices()
# Mark system to prioritize document content over pre-defined answers
self.has_pdf_content = True
self.prioritize_pdf_content = True
logger.info(f"Successfully processed PDF: {len(arabic_chunks)} Arabic and {len(english_chunks)} English segments")
# Also modify the retrieval threshold to ensure better matches
self.pdf_relevance_threshold = 1.2 # Lower threshold = stricter matching
return f"✅ Successfully processed your PDF! Found {len(arabic_chunks)} Arabic and {len(english_chunks)} English text segments. The system will now answer questions directly from your document content."
except Exception as e:
logger.error(f"Error processing PDF: {str(e)}")
return f"❌ Error processing the PDF: {str(e)}. Please try another file."
# Create the Gradio interface
def create_interface():
# Initialize the assistant
assistant = Vision2030Assistant()
def chat(message, history):
if not message or message.strip() == "":
return history, ""
# Generate response
reply = assistant.generate_response(message)
# Update history
history.append((message, reply))
return history, ""
def provide_feedback(history, rating, feedback_text):
# Record feedback for the last conversation
if history and len(history) > 0:
last_interaction = history[-1]
assistant.record_user_feedback(last_interaction[0], last_interaction[1], rating, feedback_text)
return f"Thank you for your feedback! (Rating: {rating}/5)"
return "No conversation found to rate."
@spaces.GPU
def run_evaluation():
results = assistant.evaluate_on_test_set()
# Create summary text
summary = f"""
Evaluation Results:
------------------
Total questions evaluated: {len(results['detailed_results'])}
Overall factual accuracy: {results['average_factual_accuracy']:.2f}
Average response time: {results['average_response_time']:.4f} seconds
Detailed Results:
"""
for i, result in enumerate(results['detailed_results']):
summary += f"\nQ{i+1}: {result['question']}\n"
summary += f"Reference: {result['reference']}\n"
summary += f"Response: {result['response']}\n"
summary += f"Accuracy: {result['factual_accuracy']:.2f}\n"
summary += "-" * 40 + "\n"
# Return both the results summary and visualization
fig = assistant.visualize_evaluation_results(results)
return summary, fig
def process_uploaded_file(file):
"""Process the uploaded PDF file"""
return assistant.process_pdf(file)
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Vision 2030 Virtual Assistant 🌟")
gr.Markdown("Ask questions about Saudi Arabia's Vision 2030 in both Arabic and English")
with gr.Tab("Chat"):
chatbot = gr.Chatbot(height=400)
msg = gr.Textbox(label="Your Question", placeholder="Ask about Vision 2030...")
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear Chat")
gr.Markdown("### Provide Feedback")
with gr.Row():
rating = gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Rate the Response (1-5)")
feedback_text = gr.Textbox(label="Additional Comments (Optional)")
feedback_btn = gr.Button("Submit Feedback")
feedback_result = gr.Textbox(label="Feedback Status")
with gr.Tab("Evaluation"):
evaluate_btn = gr.Button("Run Evaluation on Test Set")
eval_output = gr.Textbox(label="Evaluation Results", lines=20)
eval_chart = gr.Plot(label="Evaluation Metrics")
with gr.Tab("Upload PDF"):
gr.Markdown("""
### Upload a Vision 2030 PDF Document
Upload a PDF document to enhance the assistant's knowledge base.
""")
with gr.Row():
file_input = gr.File(
label="Select PDF File",
file_types=[".pdf"],
type="binary" # This is critical - use binary mode
)
with gr.Row():
upload_btn = gr.Button("Process PDF", variant="primary")
with gr.Row():
upload_status = gr.Textbox(
label="Upload Status",
placeholder="Upload status will appear here...",
interactive=False
)
gr.Markdown("""
### Notes:
- The PDF should contain text that can be extracted (not scanned images)
- After uploading, return to the Chat tab to ask questions about the uploaded content
""")
# Set up event handlers
msg.submit(chat, [msg, chatbot], [chatbot, msg])
submit_btn.click(chat, [msg, chatbot], [chatbot, msg])
clear_btn.click(lambda: [], None, chatbot)
feedback_btn.click(provide_feedback, [chatbot, rating, feedback_text], feedback_result)
evaluate_btn.click(run_evaluation, None, [eval_output, eval_chart])
upload_btn.click(process_uploaded_file, [file_input], [upload_status])
return demo
# Launch the app
demo = create_interface()
demo.launch()