abdull4h's picture
Update app.py
d69f501 verified
raw
history blame
14.3 kB
import gradio as gr
import os
import re
import torch
import numpy as np
from pathlib import Path
import PyPDF2
from transformers import AutoTokenizer, AutoModelForCausalLM
from sentence_transformers import SentenceTransformer
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.schema import Document
from langchain.embeddings import HuggingFaceEmbeddings
import spaces # Add this import for Hugging Face Spaces
# Create the Vision 2030 Assistant class
class Vision2030Assistant:
def __init__(self, model, tokenizer, vector_store):
self.model = model
self.tokenizer = tokenizer
self.vector_store = vector_store
self.conversation_history = []
def answer(self, user_query):
# Detect language
language = detect_language(user_query)
# Add user query to conversation history
self.conversation_history.append({"role": "user", "content": user_query})
# Get the full conversation context
conversation_context = "\n".join([
f"{'User' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
for msg in self.conversation_history[-6:] # Keep last 3 turns (6 messages)
])
# Enhance query with conversation context for better retrieval
enhanced_query = f"{conversation_context}\n{user_query}"
# Retrieve relevant contexts
contexts = retrieve_context(enhanced_query, self.vector_store, top_k=5)
# Generate response
response = generate_response(user_query, contexts, self.model, self.tokenizer, language)
# Add response to conversation history
self.conversation_history.append({"role": "assistant", "content": response})
# Also return sources for transparency
sources = [ctx.get("source", "Unknown") for ctx in contexts]
unique_sources = list(set(sources))
# Format the response with sources
if unique_sources:
source_text = "\n\nSources: " + ", ".join([os.path.basename(src) for src in unique_sources])
response_with_sources = response + source_text
else:
response_with_sources = response
return response_with_sources
def reset_conversation(self):
"""Reset the conversation history"""
self.conversation_history = []
return "Conversation has been reset."
# Helper functions
def detect_language(text):
"""Detect if text is primarily Arabic or English"""
arabic_chars = re.findall(r'[\u0600-\u06FF]', text)
is_arabic = len(arabic_chars) > len(text) * 0.5
return "arabic" if is_arabic else "english"
def retrieve_context(query, vector_store, top_k=5):
"""Retrieve most relevant document chunks for a given query"""
# Search the vector store using similarity search
results = vector_store.similarity_search_with_score(query, k=top_k)
# Format the retrieved contexts
contexts = []
for doc, score in results:
contexts.append({
"content": doc.page_content,
"source": doc.metadata.get("source", "Unknown"),
"relevance_score": score
})
return contexts
@spaces.GPU # Add decorator for GPU usage
def generate_response(query, contexts, model, tokenizer, language="auto"):
"""Generate a response using retrieved contexts with ALLaM-specific formatting"""
# Auto-detect language if not specified
if language == "auto":
language = detect_language(query)
# Format the prompt based on language
if language == "arabic":
instruction = (
"أنت مساعد افتراضي يهتم برؤية السعودية 2030. استخدم المعلومات التالية للإجابة على السؤال. "
"إذا لم تعرف الإجابة، فقل بأمانة إنك لا تعرف."
)
else: # english
instruction = (
"You are a virtual assistant for Saudi Vision 2030. Use the following information to answer the question. "
"If you don't know the answer, honestly say you don't know."
)
# Combine retrieved contexts
context_text = "\n\n".join([f"Document: {ctx['content']}" for ctx in contexts])
# Format the prompt for ALLaM instruction format
prompt = f"""<s>[INST] {instruction}
Context:
{context_text}
Question: {query} [/INST]</s>"""
try:
# Generate response with appropriate parameters for ALLaM
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Generate with appropriate parameters
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True,
repetition_penalty=1.1
)
# Decode the response
full_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the answer part (after the instruction)
response = full_output.split("[/INST]")[-1].strip()
# If response is empty for some reason, return the full output
if not response:
response = full_output
return response
except Exception as e:
print(f"Error during generation: {e}")
# Fallback response
return "I apologize, but I encountered an error while generating a response."
def process_pdf_files(pdf_files):
"""Process PDF files and create documents"""
documents = []
for pdf_file in pdf_files:
try:
# Save the uploaded file temporarily
temp_path = f"temp_{pdf_file.name}"
with open(temp_path, "wb") as f:
f.write(pdf_file.read())
# Extract text
text = ""
with open(temp_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text + "\n\n"
# Clean up
os.remove(temp_path)
if text.strip(): # If we got some text
doc = Document(
page_content=text,
metadata={"source": pdf_file.name, "filename": pdf_file.name}
)
documents.append(doc)
print(f"Successfully processed: {pdf_file.name}")
else:
print(f"Warning: No text extracted from {pdf_file.name}")
except Exception as e:
print(f"Error processing {pdf_file.name}: {e}")
print(f"Processed {len(documents)} PDF documents")
return documents
def create_vector_store(documents):
"""Create a vector store from documents"""
# Text splitter for breaking documents into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50,
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
)
# Split documents into chunks
chunks = []
for doc in documents:
doc_chunks = text_splitter.split_text(doc.page_content)
# Preserve metadata for each chunk
chunks.extend([
Document(page_content=chunk, metadata=doc.metadata)
for chunk in doc_chunks
])
print(f"Created {len(chunks)} chunks from {len(documents)} documents")
# Create embedding function
embedding_function = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)
# Create FAISS index
vector_store = FAISS.from_documents(chunks, embedding_function)
return vector_store
# Variables to store state
model = None
tokenizer = None
assistant = None
# Load the model and tokenizer
@spaces.GPU # Add decorator for GPU usage
def load_model_and_tokenizer():
global model, tokenizer
if model is not None and tokenizer is not None:
return "Model already loaded"
model_name = "ALLaM-AI/ALLaM-7B-Instruct-preview"
print(f"Loading model: {model_name}")
try:
# First attempt with AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
use_fast=False
)
# Load model with appropriate settings for ALLaM
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16, # Use bfloat16 for better compatibility
trust_remote_code=True,
device_map="auto",
)
return "Model loaded successfully with AutoTokenizer!"
except Exception as e:
error_msg = f"First loading attempt failed: {e}"
print(error_msg)
try:
# Try with specific tokenizer class if the first attempt fails
from transformers import LlamaTokenizer
tokenizer = LlamaTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
trust_remote_code=True,
device_map="auto",
)
return "Model loaded successfully with LlamaTokenizer!"
except Exception as e2:
return f"Both loading attempts failed. Error 1: {e}. Error 2: {e2}"
# Gradio Interface Functions
def process_pdfs(pdf_files):
if not pdf_files:
return "No files uploaded. Please upload PDF documents about Vision 2030."
documents = process_pdf_files(pdf_files)
if not documents:
return "Failed to extract text from the uploaded PDFs."
global assistant, model, tokenizer
# Ensure model is loaded
if model is None or tokenizer is None:
load_status = load_model_and_tokenizer()
if "successfully" not in load_status.lower():
return f"Model loading failed: {load_status}"
# Create vector store
vector_store = create_vector_store(documents)
# Initialize assistant
assistant = Vision2030Assistant(model, tokenizer, vector_store)
return f"Successfully processed {len(documents)} documents. The assistant is ready to use!"
@spaces.GPU # Add decorator for GPU usage
def answer_query(message, history):
global assistant
if assistant is None:
return "Please upload and process Vision 2030 PDF documents first."
response = assistant.answer(message)
return response
def reset_chat():
global assistant
if assistant is None:
return "No active conversation to reset."
reset_message = assistant.reset_conversation()
return reset_message
# Create Gradio interface
with gr.Blocks(title="Vision 2030 Virtual Assistant") as demo:
gr.Markdown("# Vision 2030 Virtual Assistant")
gr.Markdown("Ask questions about Saudi Vision 2030 goals, projects, and progress in Arabic or English.")
with gr.Tab("Setup"):
gr.Markdown("## Step 1: Load the Model")
load_btn = gr.Button("Load ALLaM-7B Model", variant="primary")
load_output = gr.Textbox(label="Load Status")
load_btn.click(load_model_and_tokenizer, inputs=[], outputs=load_output)
gr.Markdown("## Step 2: Upload Vision 2030 Documents")
pdf_files = gr.File(file_types=[".pdf"], file_count="multiple", label="Upload PDF Documents")
process_btn = gr.Button("Process Documents", variant="primary")
process_output = gr.Textbox(label="Processing Status")
process_btn.click(process_pdfs, inputs=[pdf_files], outputs=process_output)
with gr.Tab("Chat"):
chatbot = gr.Chatbot(label="Conversation")
message = gr.Textbox(
label="Ask a question about Vision 2030 (in Arabic or English)",
placeholder="What are the main goals of Vision 2030?",
lines=2
)
submit_btn = gr.Button("Submit", variant="primary")
reset_btn = gr.Button("Reset Conversation")
gr.Markdown("### Example Questions")
with gr.Row():
with gr.Column():
gr.Markdown("**English Questions:**")
en_examples = gr.Examples(
examples=[
"What is Saudi Vision 2030?",
"What are the economic goals of Vision 2030?",
"How does Vision 2030 support women's empowerment?",
"What environmental initiatives are part of Vision 2030?",
"What is the role of the Public Investment Fund in Vision 2030?"
],
inputs=message
)
with gr.Column():
gr.Markdown("**Arabic Questions:**")
ar_examples = gr.Examples(
examples=[
"ما هي رؤية السعودية 2030؟",
"ما هي الأهداف الاقتصادية لرؤية 2030؟",
"كيف تدعم رؤية 2030 تمكين المرأة السعودية؟",
"ما هي مبادرات رؤية 2030 للحفاظ على البيئة؟",
"ما هي استراتيجية صندوق الاستثمارات العامة في رؤية 2030؟"
],
inputs=message
)
reset_output = gr.Textbox(label="Reset Status", visible=False)
submit_btn.click(answer_query, inputs=[message, chatbot], outputs=[chatbot])
message.submit(answer_query, inputs=[message, chatbot], outputs=[chatbot])
reset_btn.click(reset_chat, inputs=[], outputs=[reset_output])
reset_btn.click(lambda: None, inputs=[], outputs=[chatbot], postprocess=False)
# Launch the app
demo.launch()