Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
from transformers import pipeline | |
from duckduckgo_search import ddg | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Tool Definitions --- | |
class WebSearchTool: | |
"""A simple open-source web search tool using DuckDuckGo.""" | |
def search(self, query: str) -> list[str]: | |
# Perform a DuckDuckGo search and return top 3 titles | |
try: | |
results = ddg(query, max_results=3) | |
if not results: | |
return [] | |
return [item.get("title", "").strip() for item in results] | |
except Exception as e: | |
print(f"DuckDuckGo search error: {e}") | |
return [] | |
class CalculatorTool: | |
"""Evaluates simple arithmetic expressions.""" | |
def calculate(self, expression: str) -> float: | |
# WARNING: using eval; in production, use a safe parser | |
return eval(expression, {}, {}) | |
# --- Agent Definition --- | |
class ToolsAgent: | |
def __init__(self): | |
print("ToolsAgent initialized.") | |
# Initialize LLM for general reasoning | |
self.llm = pipeline( | |
"text-generation", model="gpt2", tokenizer="gpt2", return_full_text=False | |
) | |
# Initialize tools | |
self.tools = { | |
"search": WebSearchTool(), | |
"calc": CalculatorTool(), | |
} | |
def __call__(self, question: str) -> str: | |
print(f"Agent received question: {question}") | |
q_lower = question.lower().strip() | |
# 1) If calculation question | |
if any(op in q_lower for op in ["+", "-", "*", "/"]): | |
try: | |
result = self.tools["calc"].calculate(q_lower) | |
return str(result) | |
except Exception as e: | |
print(f"Calc error: {e}") | |
# 2) If search instruction | |
if q_lower.startswith("search") or "find" in q_lower: | |
try: | |
titles = self.tools["search"].search(question) | |
# Return only the first word of the top title | |
return titles[0].split()[0] if titles else "" | |
except Exception as e: | |
print(f"Search error: {e}") | |
# 3) Fallback to LLM | |
try: | |
out = self.llm(question, max_length=50, num_return_sequences=1)[0]["generated_text"].strip() | |
# Return only the first token (single word/number) | |
return out.split()[0] | |
except Exception as e: | |
print(f"LLM error: {e}") | |
return "" | |
# --- Evaluation and Submission Logic --- | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
space_id = os.getenv("SPACE_ID") | |
if not profile: | |
return "Please Login to Hugging Face with the button.", None | |
username = profile.username.strip() | |
questions_url = f"{DEFAULT_API_URL}/questions" | |
submit_url = f"{DEFAULT_API_URL}/submit" | |
try: | |
agent = ToolsAgent() | |
except Exception as e: | |
return f"Error initializing agent: {e}", None | |
try: | |
resp = requests.get(questions_url, timeout=15) | |
resp.raise_for_status() | |
qs = resp.json() | |
except Exception as e: | |
return f"Error fetching questions: {e}", None | |
answers, log = [], [] | |
for item in qs: | |
tid = item.get("task_id") | |
q = item.get("question") | |
if not tid or q is None: | |
continue | |
ans = agent(q) | |
answers.append({"task_id": tid, "submitted_answer": ans}) | |
log.append({"Task ID": tid, "Question": q, "Submitted Answer": ans}) | |
if not answers: | |
return "No answers generated.", pd.DataFrame(log) | |
payload = { | |
"username": username, | |
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main", | |
"answers": answers | |
} | |
try: | |
res = requests.post(submit_url, json=payload, timeout=60) | |
res.raise_for_status() | |
data = res.json() | |
status = ( | |
f"Submission Successful! User: {data.get('username')} " | |
f"Score: {data.get('score', 'N/A')}%" | |
) | |
except Exception as e: | |
status = f"Submission Failed: {e}" | |
return status, pd.DataFrame(log) | |
# --- Gradio Interface --- | |
with gr.Blocks() as demo: | |
gr.Markdown("## Agents Course: DuckDuckGo Search + Calculator Agent") | |
gr.LoginButton() | |
run_btn = gr.Button("Run Evaluation & Submit All Answers") | |
out_txt = gr.Textbox(label="Result", lines=3) | |
out_df = gr.DataFrame(label="Log", wrap=True) | |
run_btn.click(fn=run_and_submit_all, outputs=[out_txt, out_df]) | |
if __name__ == "__main__": | |
demo.launch(debug=True) | |