File size: 13,146 Bytes
60a25ab
1b5b9ce
def429d
c1f083f
def429d
 
1b5b9ce
def429d
1b5b9ce
52b6878
def429d
 
c1f083f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
def429d
 
c1f083f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecc3973
c1f083f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecc3973
 
 
52b6878
ecc3973
c1f083f
 
 
 
 
 
 
 
52b6878
 
c1f083f
ecc3973
c1f083f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b5b9ce
287afed
c1f083f
 
 
 
 
287afed
 
c1f083f
 
287afed
 
 
 
 
c1f083f
 
287afed
 
 
c1f083f
287afed
 
 
 
 
 
c1f083f
 
 
 
 
 
 
 
 
 
def429d
c1f083f
 
ecc3973
c1f083f
 
 
 
 
def429d
 
c1f083f
 
 
 
 
def429d
c1f083f
 
 
 
 
 
def429d
c1f083f
 
a514380
c1f083f
a514380
c1f083f
 
 
 
 
 
a514380
c1f083f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a514380
c1f083f
 
 
a514380
def429d
c1f083f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecc3973
a514380
60a25ab
def429d
c1f083f
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import json
import os
import torch
import string
import requests
from bs4 import BeautifulSoup
import tempfile
import zipfile
import mimetypes
from tqdm import tqdm
import logging
import gradio as gr
from typing import List, Dict, Union, Optional
from urllib.parse import urlparse
import concurrent.futures
import validators
from pathlib import Path
import re

# Setup logging with more detailed configuration
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
    handlers=[
        logging.StreamHandler(),
        logging.FileHandler('app.log')
    ]
)
logger = logging.getLogger(__name__)

class URLProcessor:
    """Class to handle URL processing with advanced features"""
    
    def __init__(self, timeout: int = 10, max_retries: int = 3, concurrent_requests: int = 5):
        self.timeout = timeout
        self.max_retries = max_retries
        self.concurrent_requests = concurrent_requests
        self.session = requests.Session()
        # Add common headers to mimic browser behavior
        self.session.headers.update({
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
        })

    def validate_url(self, url: str) -> bool:
        """Validate URL format and accessibility"""
        try:
            result = urlparse(url)
            return all([result.scheme, result.netloc]) and validators.url(url)
        except Exception as e:
            logger.warning(f"Invalid URL format: {url} - {str(e)}")
            return False

    def fetch_content(self, url: str) -> Optional[str]:
        """Fetch content from URL with retry mechanism"""
        for attempt in range(self.max_retries):
            try:
                response = self.session.get(url, timeout=self.timeout)
                response.raise_for_status()
                return response.text
            except requests.RequestException as e:
                logger.error(f"Attempt {attempt + 1}/{self.max_retries} failed for {url}: {str(e)}")
                if attempt == self.max_retries - 1:
                    return None
            time.sleep(1)  # Delay between retries

    def process_urls(self, urls: List[str]) -> List[Dict]:
        """Process multiple URLs concurrently"""
        valid_urls = [url for url in urls if self.validate_url(url)]
        if not valid_urls:
            logger.warning("No valid URLs to process")
            return []

        results = []
        with concurrent.futures.ThreadPoolExecutor(max_workers=self.concurrent_requests) as executor:
            future_to_url = {executor.submit(self.fetch_content, url): url for url in valid_urls}
            for future in concurrent.futures.as_completed(future_to_url):
                url = future_to_url[future]
                try:
                    html = future.result()
                    if html:
                        text = extract_text(html)
                        if text:
                            results.append({
                                "source": "url",
                                "url": url,
                                "content": text,
                                "timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
                            })
                        else:
                            logger.warning(f"No text content extracted from {url}")
                except Exception as e:
                    logger.error(f"Error processing {url}: {str(e)}")

        return results

def extract_text(html: str) -> str:
    """Enhanced text extraction with better cleaning"""
    if not html:
        return ""

    soup = BeautifulSoup(html, 'html.parser')
    
    # Remove unwanted elements
    for element in soup(['script', 'style', 'header', 'footer', 'nav']):
        element.decompose()

    # Extract text with better formatting
    text = soup.get_text(separator=' ')
    
    # Clean up the text
    lines = (line.strip() for line in text.splitlines())
    chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
    text = ' '.join(chunk for chunk in chunks if chunk)
    
    # Remove excessive whitespace
    text = re.sub(r'\s+', ' ', text)
    
    return text.strip()

class FileProcessor:
    """Class to handle file processing"""
    
    def __init__(self, max_file_size: int = 10 * 1024 * 1024):  # 10MB default
        self.max_file_size = max_file_size
        self.supported_text_extensions = {'.txt', '.md', '.csv', '.json', '.xml'}

    def is_text_file(self, filepath: str) -> bool:
        """Check if file is a text file"""
        try:
            mime_type, _ = mimetypes.guess_type(filepath)
            return mime_type and mime_type.startswith('text/')
        except Exception:
            return False

    def process_file(self, file) -> List[Dict]:
        """Process uploaded file with enhanced error handling"""
        if not file:
            return []

        dataset = []
        try:
            file_size = os.path.getsize(file.name)
            if file_size > self.max_file_size:
                logger.warning(f"File size ({file_size} bytes) exceeds maximum allowed size")
                return []

            with tempfile.TemporaryDirectory() as temp_dir:
                if zipfile.is_zipfile(file.name):
                    dataset.extend(self._process_zip_file(file.name, temp_dir))
                else:
                    dataset.extend(self._process_single_file(file))

        except Exception as e:
            logger.error(f"Error processing file: {str(e)}")
            return []

        return dataset

    def _process_zip_file(self, zip_path: str, temp_dir: str) -> List[Dict]:
        """Process ZIP file contents"""
        results = []
        with zipfile.ZipFile(zip_path, 'r') as zip_ref:
            zip_ref.extractall(temp_dir)
            for root, _, files in os.walk(temp_dir):
                for filename in files:
                    filepath = os.path.join(root, filename)
                    if self.is_text_file(filepath):
                        try:
                            with open(filepath, 'r', errors='ignore') as f:
                                content = f.read()
                            if content.strip():
                                results.append({
                                    "source": "file",
                                    "filename": filename,
                                    "content": content,
                                    "timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
                                })
                        except Exception as e:
                            logger.error(f"Error reading file {filename}: {str(e)}")
        return results

    def _process_single_file(self, file) -> List[Dict]:
        """Process single file"""
        results = []
        try:
            content = file.read().decode('utf-8', errors='ignore')
            if content.strip():
                results.append({
                    "source": "file",
                    "filename": os.path.basename(file.name),
                    "content": content,
                    "timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
                })
        except Exception as e:
            logger.error(f"Error processing single file: {str(e)}")
        return results

def preprocess_bulk_text(text: str) -> str:
    """Enhanced text preprocessing"""
    if not text:
        return ""

    # Normalize line endings
    text = text.replace('\r\n', '\n').replace('\r', '\n')
    
    # Define separators
    separators = ['\n', ' / ', '/', ';', ' - ', '|', '  ']
    
    # Replace separators with commas if not already comma-separated
    if ',' not in text:
        for separator in separators:
            text = text.replace(separator, ',')
        
        # Handle domain endings
        domain_pattern = r'(\.[a-z]{2,})\s+'
        text = re.sub(domain_pattern, r'\1,', text)
        
        # Clean up multiple commas and whitespace
        text = re.sub(r',+', ',', text)
        text = text.strip(',' + string.whitespace)
        text = re.sub(r'\s*,\s*', ', ', text)
    
    return text

def create_interface():
    """Create enhanced Gradio interface"""
    
    # Custom CSS for better styling
    custom_css = """
    .container { max-width: 1200px; margin: auto; padding: 20px; }
    .output-panel { margin-top: 20px; }
    .warning { color: #856404; background-color: #fff3cd; padding: 10px; border-radius: 4px; }
    .error { color: #721c24; background-color: #f8d7da; padding: 10px; border-radius: 4px; }
    """

    with gr.Blocks(css=custom_css) as interface:
        gr.Markdown("# Advanced URL and Text Processing Tool")
        
        with gr.Tab("URL Input"):
            url_input = gr.Textbox(
                label="Enter URLs (comma-separated or one per line)",
                placeholder="https://example1.com, https://example2.com",
                lines=5
            )

        with gr.Tab("File Input"):
            file_input = gr.File(
                label="Upload text file or ZIP archive",
                file_types=[".txt", ".zip", ".md", ".csv", ".json", ".xml"]
            )

        with gr.Tab("Text Input"):
            text_input = gr.Textbox(
                label="Enter text directly",
                placeholder="Enter your text here...",
                lines=5
            )

        # Process button with loading state
        process_btn = gr.Button("Process Input", variant="primary")

        # Output components
        with gr.Row():
            output_file = gr.File(label="Processed Dataset")
            output_text = gr.Textbox(
                label="Processing Results",
                lines=3,
                interactive=False
            )

        def process_all_inputs(urls, file, text):
            """Process all input types with progress tracking"""
            try:
                dataset = []
                
                # Process URLs
                if urls:
                    url_processor = URLProcessor()
                    url_list = [u.strip() for u in urls.split(',') if u.strip()]
                    dataset.extend(url_processor.process_urls(url_list))

                # Process files
                if file:
                    file_processor = FileProcessor()
                    dataset.extend(file_processor.process_file(file))

                # Process text input
                if text:
                    processed_text = preprocess_bulk_text(text)
                    if processed_text:
                        dataset.append({
                            "source": "input",
                            "content": processed_text,
                            "timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
                        })

                if not dataset:
                    return [None, "No valid data to process. Please check your inputs."]

                # Save results
                output_file = 'processed_dataset.json'
                with open(output_file, 'w', encoding='utf-8') as f:
                    json.dump(dataset, f, indent=2, ensure_ascii=False)

                # Generate summary
                summary = f"""
                Processing completed successfully!
                - URLs processed: {sum(1 for d in dataset if d['source'] == 'url')}
                - Files processed: {sum(1 for d in dataset if d['source'] == 'file')}
                - Text inputs processed: {sum(1 for d in dataset if d['source'] == 'input')}
                """

                return [output_file, summary]

            except Exception as e:
                error_msg = f"Error during processing: {str(e)}"
                logger.error(error_msg)
                return [None, error_msg]

        # Connect the interface
        process_btn.click(
            fn=process_all_inputs,
            inputs=[url_input, file_input, text_input],
            outputs=[output_file, output_text]
        )

        # Add comprehensive instructions
        gr.Markdown("""
        ## Instructions
        1. **URL Input**: 
           - Enter URLs separated by commas or new lines
           - URLs must start with http:// or https://
           - Invalid URLs will be skipped
        
        2. **File Input**:
           - Upload text files or ZIP archives
           - Supported formats: .txt, .zip, .md, .csv, .json, .xml
           - Maximum file size: 10MB
        
        3. **Text Input**:
           - Directly enter or paste text
           - Text will be automatically formatted
        
        4. Click 'Process Input' to generate the dataset
        
        The tool will combine all valid inputs into a single JSON dataset file.
        """)

    return interface

if __name__ == "__main__":
    # Initialize mimetypes
    mimetypes.init()
    
    # Create and launch the interface
    interface = create_interface()
    interface.launch(
        share=True,
        server_name="0.0.0.0",
        server_port=7860,
        debug=True
    )