File size: 9,954 Bytes
5798d9f
8433748
 
 
 
 
5798d9f
c00eec9
8433748
 
 
 
 
 
 
 
 
 
c8ff505
c00eec9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8433748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c00eec9
8433748
 
 
 
c00eec9
 
 
8433748
 
 
c00eec9
8433748
 
 
c00eec9
 
 
 
 
 
 
 
 
 
 
8433748
 
c00eec9
 
 
 
 
 
 
 
 
8433748
 
 
 
 
 
 
 
 
 
 
 
 
 
c00eec9
8433748
 
 
 
 
 
 
 
 
 
 
 
 
c00eec9
 
 
8433748
 
c00eec9
 
 
8433748
 
 
 
 
 
 
 
 
 
 
 
c00eec9
 
8433748
 
c00eec9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8433748
c00eec9
 
 
 
 
 
 
 
bc33f9a
c00eec9
 
 
8433748
c00eec9
8433748
c00eec9
 
 
 
 
 
 
 
c8ff505
c00eec9
8433748
c00eec9
 
 
 
 
8433748
c00eec9
 
 
 
 
 
8433748
c00eec9
8433748
c00eec9
 
 
8433748
 
c00eec9
8433748
c00eec9
8433748
 
 
 
c00eec9
 
 
 
 
 
8433748
 
 
 
 
c00eec9
8433748
c8ff505
8433748
c00eec9
 
 
8433748
 
 
 
 
c00eec9
8433748
 
 
 
c00eec9
 
8433748
 
 
c00eec9
bc33f9a
8433748
 
 
c00eec9
 
8433748
 
c8ff505
8433748
c00eec9
8433748
 
 
5798d9f
8433748
c00eec9
8433748
 
c8ff505
8433748
c00eec9
8433748
 
c8ff505
8433748
 
 
 
c00eec9
8433748
 
 
 
c00eec9
 
8433748
c8ff505
8433748
c00eec9
 
 
8433748
c00eec9
 
 
 
 
 
8433748
c00eec9
8433748
c00eec9
 
 
 
 
 
8433748
 
 
 
 
97adf15
8433748
c00eec9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import gradio as gr
import requests
import zipfile
import uuid
import bs4
import lxml
import os
from huggingface_hub import InferenceClient, HfApi
import random
import json
import datetime
from pypdf import PdfReader
from agent import (
    PREFIX,
    COMPRESS_DATA_PROMPT,
    COMPRESS_DATA_PROMPT_SMALL,
    LOG_PROMPT,
    LOG_RESPONSE,
)

# Initialize Hugging Face client
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
reponame = "acecalisto3/tmp"
save_data = f'https://huggingface.co/datasets/{reponame}/raw/main/'

# Get HF token from environment or use demo mode
token_self = os.environ.get('HF_TOKEN', 'dummy_token')  # Use dummy token for demo
if token_self == 'dummy_token':
    print("Warning: Running in demo mode without HuggingFace token. Some features may be limited.")
api = HfApi(token=token_self)

# Constants
VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 20000

def find_all(purpose, task, history, url, result, steps):
    return_list = []
    visited_links = set()
    links_to_visit = [(url, 0)]

    while links_to_visit:
        current_url, current_depth = links_to_visit.pop(0)
        if current_depth < steps:
            try:
                if current_url not in visited_links:
                    visited_links.add(current_url)
                    source = requests.get(current_url)
                    if source.status_code == 200:
                        soup = bs4.BeautifulSoup(source.content, 'lxml')
                        rawp = f'RAW TEXT RETURNED: {soup.text}'
                        return_list.append(rawp)

                        for link in soup.find_all("a"):
                            href = link.get('href')
                            if href and href.startswith('http'):
                                links_to_visit.append((href, current_depth + 1))
            except Exception as e:
                print(f"Error fetching {current_url}: {e}")

    return True, return_list

def read_txt(txt_path):
    with open(txt_path, "r") as f:
        text = f.read()
    return text

def read_pdf(pdf_path):
    text = ""
    reader = PdfReader(pdf_path)
    for page in reader.pages:
        text = f'{text}\n{page.extract_text()}'
    return text

error_box = []
def read_pdf_online(url):
    print(f"reading {url}")
    response = requests.get(url, stream=True)
    if response.status_code == 200:
        with open("test.pdf", "wb") as f:
            f.write(response.content)
        reader = PdfReader("test.pdf")
        text = ""
        for page in reader.pages:
            text = f'{text}\n{page.extract_text()}'
        return text
    else:
        error_box.append(url)
        return str(response.status_code)

def format_prompt(message, history):
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def run_gpt(prompt_template, stop_tokens, max_tokens, seed, **prompt_kwargs):
    timestamp = datetime.datetime.now()
    
    generate_kwargs = dict(
        temperature=0.9,
        max_new_tokens=max_tokens,
        top_p=0.95,
        repetition_penalty=1.0,
        do_sample=True,
        seed=seed,
    )
    
    content = PREFIX.format(
        timestamp=timestamp,
        purpose="Compile the provided data and complete the users task"
    ) + prompt_template.format(**prompt_kwargs)
    
    if VERBOSE:
        print(LOG_PROMPT.format(content))
    
    stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
    resp = ""
    for response in stream:
        resp += response.token.text

    if VERBOSE:
        print(LOG_RESPONSE.format(resp))
    return resp

def compress_data(c, instruct, history):
    seed = random.randint(1, 1000000000)
    divr = int(c)/MAX_DATA
    divi = int(divr)+1 if divr != int(divr) else int(divr)
    chunk = int(int(c)/divr)
    out = []
    s = 0
    e = chunk
    
    for z in range(divi):
        hist = history[s:e]
        resp = run_gpt(
            COMPRESS_DATA_PROMPT_SMALL,
            stop_tokens=["observation:", "task:", "action:", "thought:"],
            max_tokens=8192,
            seed=seed,
            direction=instruct,
            knowledge="",
            history=hist,
        )
        out.append(resp)
        e = e+chunk
        s = s+chunk
    return out

def create_zip_file(output_data, zip_name):
    with zipfile.ZipFile(zip_name, 'w') as zipf:
        for i, data in enumerate(output_data):
            zipf.writestr(f'data_{i}.txt', data)
    return zip_name

def process_and_format_response(instructions, chat_history, report, summary_memory, 
                              input_data, uploaded_files, input_url, pdf_input_url):
    try:
        # Process URL if provided
        if input_url:
            success, content = find_all("Extract content", "", [], input_url, "", 1)
            if success and content:
                processed_text = "\n".join(content)
            else:
                return "", [["Error", "Failed to fetch URL content"]], "URL processing failed", None
        
        # Process uploaded files
        elif uploaded_files:
            processed_text = ""
            for file in uploaded_files:
                if file.name.endswith('.pdf'):
                    processed_text += read_pdf(file.name) + "\n\n"
                elif file.name.endswith('.txt'):
                    processed_text += read_txt(file.name) + "\n\n"
        
        # Process direct text input
        elif input_data:
            processed_text = input_data
        else:
            return "", [["Error", "No input provided"]], "No input data", None

        # Generate summary using compress_data
        if processed_text:
            c = len(processed_text.split())
            summary = compress_data(c, instructions or "Summarize this text", processed_text)
            
            # Format the response
            if isinstance(summary, list):
                summary_text = "\n".join(summary)
            else:
                summary_text = str(summary)

            # Create chat messages
            messages = [
                ["Input", processed_text[:500] + "..."],  # Show first 500 chars of input
                ["Summary", summary_text]
            ]

            # Create JSON output
            json_output = {
                "input_length": len(processed_text),
                "summary_length": len(summary_text),
                "summary": summary_text
            }

            return "", messages, "Processing completed successfully", json_output

    except Exception as e:
        error_msg = f"Error: {str(e)}"
        return "", [["Error", error_msg]], error_msg, None

def clear_fn():
    return "", []

# Create Gradio interface
with gr.Blocks() as app:
    gr.HTML("""<center><h1>Mixtral 8x7B TLDR Summarizer + Web</h1><h3>Summarize Data of unlimited length</h3></center>""")
    
    # Main chat interface
    with gr.Row():
        chatbot = gr.Chatbot(
            label="Mixtral 8x7B Chatbot",
            show_copy_button=True,
            height=400
        )
    
    # Control Panel
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(
                label="Instructions",
                placeholder="Enter processing instructions here..."
            )
            steps = gr.Slider(
                label="Crawl Steps",
                minimum=1,
                maximum=5,
                value=1,
                info="Number of levels to crawl for web content"
            )
        with gr.Column(scale=1):
            report_check = gr.Checkbox(
                label="Return Report",
                value=True,
                info="Generate detailed analysis report"
            )
            sum_mem_check = gr.Radio(
                label="Output Type",
                choices=["Summary", "Memory"],
                value="Summary",
                info="Choose between summarized or memory-based output"
            )
            process_btn = gr.Button("Process", variant="primary")
    
    # Input Tabs
    with gr.Tabs() as input_tabs:
        with gr.Tab("πŸ“ Text"):
            text_input = gr.Textbox(
                label="Input Text",
                lines=6,
                placeholder="Paste your text here..."
            )
        with gr.Tab("πŸ“ File"):
            file_input = gr.File(
                label="Upload Files",
                file_types=[".pdf", ".txt"],
                file_count="multiple"
            )
        with gr.Tab("🌐 Web URL"):
            url_input = gr.Textbox(
                label="Website URL",
                placeholder="https://example.com"
            )
        with gr.Tab("πŸ“„ PDF URL"):
            pdf_url_input = gr.Textbox(
                label="PDF URL",
                placeholder="https://example.com/document.pdf"
            )
    
    # Output Section
    with gr.Row():
        with gr.Column():
            json_output = gr.JSON(
                label="Structured Output",
                show_label=True
            )
        with gr.Column():
            error_output = gr.Textbox(
                label="Status & Errors",
                interactive=False
            )
    
    # Event handlers
    process_btn.click(
        process_and_format_response,
        inputs=[
            prompt,
            chatbot,
            report_check,
            sum_mem_check,
            text_input,
            file_input,
            url_input,
            pdf_url_input
        ],
        outputs=[
            prompt,
            chatbot,
            error_output,
            json_output
        ]
    )

    # Launch the app
    app.queue(default_concurrency_limit=20).launch(
        show_api=False,
        share=False,
        server_name="0.0.0.0",
        server_port=8000
    )