Spaces:
Running
Running
File size: 9,953 Bytes
5798d9f 8433748 5798d9f c00eec9 8433748 c8ff505 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 bc33f9a c00eec9 8433748 c00eec9 8433748 c00eec9 c8ff505 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c8ff505 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 bc33f9a 8433748 c00eec9 8433748 c8ff505 8433748 c00eec9 8433748 5798d9f 8433748 c00eec9 8433748 c8ff505 8433748 c00eec9 8433748 c8ff505 8433748 c00eec9 8433748 c00eec9 8433748 c8ff505 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 c00eec9 8433748 99bb334 8433748 c00eec9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import gradio as gr
import requests
import zipfile
import uuid
import bs4
import lxml
import os
from huggingface_hub import InferenceClient, HfApi
import random
import json
import datetime
from pypdf import PdfReader
from agent import (
PREFIX,
COMPRESS_DATA_PROMPT,
COMPRESS_DATA_PROMPT_SMALL,
LOG_PROMPT,
LOG_RESPONSE,
)
# Initialize Hugging Face client
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
reponame = "acecalisto3/tmp"
save_data = f'https://huggingface.co/datasets/{reponame}/raw/main/'
# Get HF token from environment or use demo mode
token_self = os.environ.get('HF_TOKEN', 'dummy_token') # Use dummy token for demo
if token_self == 'dummy_token':
print("Warning: Running in demo mode without HuggingFace token. Some features may be limited.")
api = HfApi(token=token_self)
# Constants
VERBOSE = True
MAX_HISTORY = 100
MAX_DATA = 20000
def find_all(purpose, task, history, url, result, steps):
return_list = []
visited_links = set()
links_to_visit = [(url, 0)]
while links_to_visit:
current_url, current_depth = links_to_visit.pop(0)
if current_depth < steps:
try:
if current_url not in visited_links:
visited_links.add(current_url)
source = requests.get(current_url)
if source.status_code == 200:
soup = bs4.BeautifulSoup(source.content, 'lxml')
rawp = f'RAW TEXT RETURNED: {soup.text}'
return_list.append(rawp)
for link in soup.find_all("a"):
href = link.get('href')
if href and href.startswith('http'):
links_to_visit.append((href, current_depth + 1))
except Exception as e:
print(f"Error fetching {current_url}: {e}")
return True, return_list
def read_txt(txt_path):
with open(txt_path, "r") as f:
text = f.read()
return text
def read_pdf(pdf_path):
text = ""
reader = PdfReader(pdf_path)
for page in reader.pages:
text = f'{text}\n{page.extract_text()}'
return text
error_box = []
def read_pdf_online(url):
print(f"reading {url}")
response = requests.get(url, stream=True)
if response.status_code == 200:
with open("test.pdf", "wb") as f:
f.write(response.content)
reader = PdfReader("test.pdf")
text = ""
for page in reader.pages:
text = f'{text}\n{page.extract_text()}'
return text
else:
error_box.append(url)
return str(response.status_code)
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(prompt_template, stop_tokens, max_tokens, seed, **prompt_kwargs):
timestamp = datetime.datetime.now()
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=max_tokens,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = PREFIX.format(
timestamp=timestamp,
purpose="Compile the provided data and complete the users task"
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
print(LOG_PROMPT.format(content))
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_data(c, instruct, history):
seed = random.randint(1, 1000000000)
divr = int(c)/MAX_DATA
divi = int(divr)+1 if divr != int(divr) else int(divr)
chunk = int(int(c)/divr)
out = []
s = 0
e = chunk
for z in range(divi):
hist = history[s:e]
resp = run_gpt(
COMPRESS_DATA_PROMPT_SMALL,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=8192,
seed=seed,
direction=instruct,
knowledge="",
history=hist,
)
out.append(resp)
e = e+chunk
s = s+chunk
return out
def create_zip_file(output_data, zip_name):
with zipfile.ZipFile(zip_name, 'w') as zipf:
for i, data in enumerate(output_data):
zipf.writestr(f'data_{i}.txt', data)
return zip_name
def process_and_format_response(instructions, chat_history, report, summary_memory,
input_data, uploaded_files, input_url, pdf_input_url):
try:
# Process URL if provided
if input_url:
success, content = find_all("Extract content", "", [], input_url, "", 1)
if success and content:
processed_text = "\n".join(content)
else:
return "", [["Error", "Failed to fetch URL content"]], "URL processing failed", None
# Process uploaded files
elif uploaded_files:
processed_text = ""
for file in uploaded_files:
if file.name.endswith('.pdf'):
processed_text += read_pdf(file.name) + "\n\n"
elif file.name.endswith('.txt'):
processed_text += read_txt(file.name) + "\n\n"
# Process direct text input
elif input_data:
processed_text = input_data
else:
return "", [["Error", "No input provided"]], "No input data", None
# Generate summary using compress_data
if processed_text:
c = len(processed_text.split())
summary = compress_data(c, instructions or "Summarize this text", processed_text)
# Format the response
if isinstance(summary, list):
summary_text = "\n".join(summary)
else:
summary_text = str(summary)
# Create chat messages
messages = [
["Input", processed_text[:500] + "..."], # Show first 500 chars of input
["Summary", summary_text]
]
# Create JSON output
json_output = {
"input_length": len(processed_text),
"summary_length": len(summary_text),
"summary": summary_text
}
return "", messages, "Processing completed successfully", json_output
except Exception as e:
error_msg = f"Error: {str(e)}"
return "", [["Error", error_msg]], error_msg, None
def clear_fn():
return "", []
# Create Gradio interface
with gr.Blocks() as app:
gr.HTML("""<center><h1>Mixtral 8x7B TLDR Summarizer + Web</h1><h3>Summarize Data of unlimited length</h3></center>""")
# Main chat interface
with gr.Row():
chatbot = gr.Chatbot(
label="Mixtral 8x7B Chatbot",
show_copy_button=True,
height=400
)
# Control Panel
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(
label="Instructions",
placeholder="Enter processing instructions here..."
)
steps = gr.Slider(
label="Crawl Steps",
minimum=1,
maximum=5,
value=1,
info="Number of levels to crawl for web content"
)
with gr.Column(scale=1):
report_check = gr.Checkbox(
label="Return Report",
value=True,
info="Generate detailed analysis report"
)
sum_mem_check = gr.Radio(
label="Output Type",
choices=["Summary", "Memory"],
value="Summary",
info="Choose between summarized or memory-based output"
)
process_btn = gr.Button("Process", variant="primary")
# Input Tabs
with gr.Tabs() as input_tabs:
with gr.Tab("π Text"):
text_input = gr.Textbox(
label="Input Text",
lines=6,
placeholder="Paste your text here..."
)
with gr.Tab("π File"):
file_input = gr.File(
label="Upload Files",
file_types=[".pdf", ".txt"],
file_count="multiple"
)
with gr.Tab("π Web URL"):
url_input = gr.Textbox(
label="Website URL",
placeholder="https://example.com"
)
with gr.Tab("π PDF URL"):
pdf_url_input = gr.Textbox(
label="PDF URL",
placeholder="https://example.com/document.pdf"
)
# Output Section
with gr.Row():
with gr.Column():
json_output = gr.JSON(
label="Structured Output",
show_label=True
)
with gr.Column():
error_output = gr.Textbox(
label="Status & Errors",
interactive=False
)
# Event handlers
process_btn.click(
process_and_format_response,
inputs=[
prompt,
chatbot,
report_check,
sum_mem_check,
text_input,
file_input,
url_input,
pdf_url_input
],
outputs=[
prompt,
chatbot,
error_output,
json_output
]
)
# Launch the app
app.queue(default_concurrency_limit=20).launch(
show_api=False,
share=False
server_name="0.0.0.0",
server_port=8000
)
|