urld / app2.py
acecalisto3's picture
Update app2.py
2bc3596 verified
raw
history blame
112 kB
import json
import os
import re
import time
import logging
import mimetypes
import zipfile
import tempfile
import chardet
import io
import csv
import xml.etree.ElementTree as ET
from datetime import datetime
from typing import List, Dict, Optional, Union, Tuple, Any
from pathlib import Path
from urllib.parse import urlparse, urljoin
import requests
import validators
import gradio as gr
from diskcache import Cache # Unused in provided code, kept for completeness
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
from cleantext import clean # Unused in provided code, kept for completeness
import qrcode
from PIL import Image, ImageDraw, ImageFont # ImageFont may require pillow[extra]
import numpy as np # Unused in provided code, kept for completeness
import tarfile
import gzip
import math
import random
import pandas as pd
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
# Setup enhanced logging with more detailed formatting
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('app.log', encoding='utf-8')
])
logger = logging.getLogger(__name__)
# Conditional imports for document processing
try:
from PyPDF2 import PdfReader
PDF_SUPPORT = True
except ImportError:
PDF_SUPPORT = False
logger.warning("PyPDF2 not installed. PDF file processing will be limited.")
try:
from docx import Document
DOCX_SUPPORT = True
except ImportError:
DOCX_SUPPORT = False
logger.warning("python-docx not installed. DOCX file processing will be limited.")
try:
from pyth.plugins.plaintext.writer import PlaintextWriter
from pyth.plugins.rtf15.reader import Rtf15Reader
RTF_SUPPORT = True
except ImportError:
RTF_SUPPORT = False
logger.warning("pyth not installed. RTF file processing will be limited.")
try:
from odf.opendocument import OpenDocumentText
from odf import text as odftext
ODT_SUPPORT = True
except ImportError:
ODT_SUPPORT = False
logger.warning("odfpy not installed. ODT file processing will be limited.")
# Ensure output directories exist with modern structure
OUTPUTS_DIR = Path('output')
QR_CODES_DIR = OUTPUTS_DIR / 'qr_codes'
TEMP_DIR = OUTPUTS_DIR / 'temp'
for directory in [OUTPUTS_DIR, QR_CODES_DIR, TEMP_DIR]:
directory.mkdir(parents=True, exist_ok=True)
class EnhancedURLProcessor:
"""Advanced URL processing with enhanced content extraction and recursive link following."""
def __init__(self):
# Use a real requests session with retry strategy
self.session = requests.Session()
retry_strategy = Retry(
total=3,
backoff_factor=1,
status_forcelist=[429, 500, 502, 503, 504],
allowed_methods=["HEAD", "GET"]
)
adapter = HTTPAdapter(max_retries=retry_strategy)
self.session.mount("http://", adapter)
self.session.mount("https://", adapter)
self.user_agent = UserAgent()
self.timeout = 15 # seconds
def validate_url(self, url: str) -> Dict[str, Any]:
"""Enhanced URL validation with accessibility check."""
if not validators.url(url):
return {'is_valid': False, 'message': 'Invalid URL format', 'details': 'URL must begin with http:// or https://'}
parsed = urlparse(url)
if not all([parsed.scheme, parsed.netloc]):
return {'is_valid': False, 'message': 'Incomplete URL', 'details': 'Missing scheme or domain'}
try:
# Use a HEAD request to check accessibility without downloading full content
headers = {'User-Agent': self.user_agent.random}
response = self.session.head(url, timeout=self.timeout, headers=headers, allow_redirects=True)
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
# Check content type if available in HEAD response
content_type = response.headers.get('Content-Type', '').split(';')[0].strip()
if not content_type or not (content_type.startswith('text/') or 'json' in content_type or 'xml' in content_type):
# Basic check if content type seems relevant for text extraction
logger.warning(f"URL {url} returned potentially irrelevant content type: {content_type}")
# Decide if this should invalidate the URL or just add a note
# For now, we'll allow fetching but add a note.
return {
'is_valid': True,
'message': 'URL is valid and accessible',
'details': {
'final_url': response.url, # Capture final URL after redirects
'content_type': content_type,
'server': response.headers.get('Server', 'N/A'),
'size': response.headers.get('Content-Length', 'N/A')
}
}
except requests.exceptions.RequestException as e:
return {'is_valid': False, 'message': 'URL not accessible', 'details': str(e)}
except Exception as e:
logger.error(f"Unexpected error during URL validation for {url}: {e}")
return {'is_valid': False, 'message': 'Unexpected validation error', 'details': str(e)}
def fetch_content(self, url: str, retry_count: int = 0) -> Optional[Dict[str, Any]]:
"""Enhanced content fetcher with retry mechanism and complete character extraction."""
try:
logger.info(f"Fetching content from URL: {url} (Attempt {retry_count + 1})")
headers = {'User-Agent': self.user_agent.random}
response = self.session.get(url, timeout=self.timeout, headers=headers, allow_redirects=True)
response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
final_url = response.url # Capture potential redirects
content_type = response.headers.get('Content-Type', '').split(';')[0].strip()
# Attempt to detect encoding if not specified in headers
encoding = response.encoding # requests attempts to guess encoding
if encoding is None or encoding == 'ISO-8859-1': # Fallback if requests guess is default/uncertain
try:
encoding_detection = chardet.detect(response.content)
encoding = encoding_detection['encoding'] or 'utf-8'
logger.debug(f"Chardet detected encoding: {encoding} for {url}")
except Exception as e:
logger.warning(f"Chardet detection failed for {url}: {e}. Falling back to utf-8.")
encoding = 'utf-8'
raw_content = response.content.decode(encoding, errors='replace')
# Extract metadata
metadata = {
'original_url': url,
'final_url': final_url,
'timestamp': datetime.now().isoformat(),
'detected_encoding': encoding,
'content_type': content_type,
'content_length': len(response.content),
'headers': dict(response.headers),
'status_code': response.status_code
}
# Process based on content type
processed_extraction = self._process_web_content(raw_content, metadata['content_type'], final_url)
return {
'source': 'url',
'url': url, # Keep original URL as identifier for this step
'raw_content': raw_content,
'metadata': metadata,
'extracted_data': processed_extraction['data'],
'processing_notes': processed_extraction['notes']
}
except requests.exceptions.RequestException as e:
logger.error(f"Failed to fetch content from {url}: {e}")
return {
'source': 'url',
'url': url,
'raw_content': None,
'metadata': {'original_url': url, 'timestamp': datetime.now().isoformat(), 'status_code': getattr(e.response, 'status_code', None)},
'extracted_data': None,
'processing_notes': [f"Failed to fetch content: {str(e)}"]
}
except Exception as e:
logger.error(f"Unexpected error while fetching or processing URL {url}: {e}")
return {
'source': 'url',
'url': url,
'raw_content': raw_content if 'raw_content' in locals() else None,
'metadata': metadata if 'metadata' in locals() else {'original_url': url, 'timestamp': datetime.now().isoformat(), 'status_code': None},
'extracted_data': None,
'processing_notes': [f"Unexpected processing error: {str(e)}"]
}
def _process_web_content(self, content: str, content_type: str, base_url: str) -> Dict[str, Any]:
"""Process content based on detected content type"""
lower_content_type = content_type.lower()
notes = []
extracted_data: Any = None
try:
if 'text/html' in lower_content_type:
logger.debug(f"Processing HTML content from {base_url}")
extracted_data = self._process_html_content_enhanced(content, base_url)
notes.append("Processed as HTML")
elif 'application/json' in lower_content_type or 'text/json' in lower_content_type:
logger.debug(f"Processing JSON content from {base_url}")
try:
extracted_data = json.loads(content)
notes.append("Parsed as JSON")
except json.JSONDecodeError as e:
extracted_data = content
notes.append(f"Failed to parse as JSON: {e}")
logger.warning(f"Failed to parse JSON from {base_url}: {e}")
except Exception as e:
extracted_data = content
notes.append(f"Error processing JSON: {e}")
logger.error(f"Error processing JSON from {base_url}: {e}")
elif 'application/xml' in lower_content_type or 'text/xml' in lower_content_type or lower_content_type.endswith('+xml'):
logger.debug(f"Processing XML content from {base_url}")
try:
root = ET.fromstring(content)
xml_text = ET.tostring(root, encoding='unicode', method='xml')
extracted_data = xml_text
notes.append("Parsed as XML (text representation)")
except ET.ParseError as e:
extracted_data = content
notes.append(f"Failed to parse as XML: {e}")
logger.warning(f"Failed to parse XML from {base_url}: {e}")
except Exception as e:
extracted_data = content
notes.append(f"Error processing XML: {e}")
logger.error(f"Error processing XML from {base_url}: {e}")
elif 'text/plain' in lower_content_type or 'text/' in lower_content_type:
logger.debug(f"Processing Plain Text content from {base_url}")
extracted_data = content
notes.append("Processed as Plain Text")
else:
logger.debug(f"Unknown content type '{content_type}' from {base_url}. Storing raw content.")
extracted_data = content
notes.append(f"Unknown content type '{content_type}'. Stored raw text.")
except Exception as e:
logger.error(f"Unexpected error in _process_web_content for {base_url} ({content_type}): {e}")
extracted_data = content
notes.append(f"Unexpected processing error: {e}. Stored raw text.")
return {'data': extracted_data, 'notes': notes}
def _process_html_content_enhanced(self, content: str, base_url: str) -> Dict[str, Any]:
"""Process HTML content, preserving text, and extracting metadata and links."""
extracted: Dict[str, Any] = {
'title': None,
'meta_description': None,
'full_text': "",
'links': []
}
try:
soup = BeautifulSoup(content, 'html.parser')
if soup.title and soup.title.string:
extracted['title'] = soup.title.string.strip()
meta_desc = soup.find('meta', attrs={'name': 'description'})
if meta_desc and meta_desc.get('content'):
extracted['meta_description'] = meta_desc['content'].strip()
unique_links = set()
for a_tag in soup.find_all('a', href=True):
href = a_tag['href'].strip()
if href and not href.startswith(('#', 'mailto:', 'tel:', 'javascript:')):
text = a_tag.get_text().strip()
try:
absolute_url = urljoin(base_url, href)
if absolute_url not in unique_links:
extracted['links'].append({'text': text, 'url': absolute_url})
unique_links.add(absolute_url)
except Exception:
if validators.url(href) and href not in unique_links:
extracted['links'].append({'text': text, 'url': href})
unique_links.add(href)
elif urlparse(href).netloc and href not in unique_links:
extracted['links'].append({'text': text, 'url': href})
unique_links.add(href)
soup_copy = BeautifulSoup(content, 'html.parser')
for script_or_style in soup_copy(["script", "style"]):
script_or_style.extract()
text = soup_copy.get_text(separator='\n')
lines = text.splitlines()
cleaned_lines = [line.strip() for line in lines if line.strip()]
extracted['full_text'] = '\n'.join(cleaned_lines)
except Exception as e:
logger.error(f"Enhanced HTML processing error for {base_url}: {e}")
soup_copy = BeautifulSoup(content, 'html.parser')
for script_or_style in soup_copy(["script", "style"]):
script_or_style.extract()
extracted['full_text'] = soup_copy.get_text(separator='\n').strip()
extracted['processing_error'] = f"Enhanced HTML processing failed: {e}"
return extracted
def fetch_content_with_depth(self, url: str, max_steps: int = 0) -> Dict[str, Any]:
"""Fetches content from a URL and recursively follows links up to max_steps depth."""
if not isinstance(max_steps, int) or not (0 <= max_steps <= 10):
logger.error(f"Invalid max_steps value: {max_steps}. Must be an integer between 0 and 10.")
return {
'url': url,
'level': 0,
'fetch_result': None,
'linked_extractions': [],
'processing_notes': [f"Invalid max_steps value: {max_steps}. Must be an integer between 0 and 10."]
}
validation_result = self.validate_url(url)
if not validation_result['is_valid']:
logger.error(f"Initial URL validation failed for {url}: {validation_result['message']}")
return {
'url': url,
'level': 0,
'fetch_result': None,
'linked_extractions': [],
'processing_notes': [f"Initial URL validation failed: {validation_result['message']}"]
}
# Use a set to keep track of visited URLs during the crawl to avoid infinite loops
visited_urls = set()
return self._fetch_content_recursive(url, max_steps, current_step=0, visited_urls=visited_urls)
def _fetch_content_recursive(self, url: str, max_steps: int, current_step: int, visited_urls: set) -> Dict[str, Any]:
"""Recursive helper function to fetch content and follow links."""
if current_step > max_steps:
logger.debug(f"Depth limit ({max_steps}) reached for {url} at level {current_step}.")
return {
'url': url,
'level': current_step,
'fetch_result': None,
'linked_extractions': [],
'processing_notes': [f"Depth limit ({max_steps}) reached."]
}
# Normalize URL before checking visited set
normalized_url = url.rstrip('/') # Simple normalization
if normalized_url in visited_urls:
logger.debug(f"Skipping already visited URL: {url} at level {current_step}.")
return {
'url': url,
'level': current_step,
'fetch_result': None, # Indicate not fetched in this run
'linked_extractions': [],
'processing_notes': ["URL already visited in this crawl."]
}
visited_urls.add(normalized_url) # Mark as visited
logger.info(f"Processing URL: {url} at level {current_step}/{max_steps}")
fetch_result = self.fetch_content(url)
linked_extractions: List[Dict[str, Any]] = []
if fetch_result and fetch_result.get('extracted_data') and 'text/html' in fetch_result.get('metadata', {}).get('content_type', '').lower():
extracted_data = fetch_result['extracted_data']
links = extracted_data.get('links', [])
logger.info(f"Found {len(links)} potential links on {url} at level {current_step}. Proceeding to depth {current_step + 1}.")
if current_step < max_steps:
for link_info in links:
linked_url = link_info.get('url')
if linked_url:
# Ensure linked URL is absolute and potentially within the same domain
# Simple same-domain check (can be made more sophisticated)
try:
base_domain = urlparse(url).netloc
linked_domain = urlparse(linked_url).netloc
# Allow processing if domains match OR if linked_domain is empty (relative link)
if linked_domain and linked_domain != base_domain:
logger.debug(f"Skipping external link: {linked_url}")
continue # Skip external links
# Recursively call for linked URLs
linked_result = self._fetch_content_recursive(linked_url, max_steps, current_step + 1, visited_urls)
if linked_result:
linked_extractions.append(linked_result)
except Exception as e:
logger.warning(f"Error processing linked URL {linked_url} from {url}: {e}")
current_notes = fetch_result.get('processing_notes', []) if fetch_result else ['Fetch failed.']
if fetch_result and fetch_result.get('fetch_result') is not None: # Only add level note if fetch was attempted
if f"Processed at level {current_step}" not in current_notes:
current_notes.append(f"Processed at level {current_step}")
return {
'url': url,
'level': current_step,
'fetch_result': fetch_result,
'linked_extractions': linked_extractions,
'processing_notes': current_notes
}
class EnhancedFileProcessor:
"""Advanced file processing with enhanced content extraction"""
def __init__(self, max_file_size: int = 5 * 1024 * 1024 * 1024): # 5GB default
self.max_file_size = max_file_size
self.supported_extensions = {
'.txt', '.md', '.csv', '.json', '.xml', '.html', '.htm',
'.log', '.yml', '.yaml', '.ini', '.conf', '.cfg',
'.pdf', '.doc', '.docx', '.rtf', '.odt',
'.zip', '.tar', '.gz', '.bz2', '.7z', '.rar',
}
self.archive_extensions = {'.zip', '.tar', '.gz', '.bz2', '.7z', '.rar'}
def process_file(self, file) -> List[Dict]:
"""Process uploaded file with enhanced error handling and complete extraction"""
if not file or not hasattr(file, 'name'):
logger.warning("Received invalid file object.")
return []
dataset = []
# Gradio file object has a 'name' attribute which is the temporary path
file_path = Path(file.name)
if not file_path.exists():
logger.error(f"File path does not exist: {file_path}")
return [{
'source': 'file',
'filename': file.name if hasattr(file, 'name') else 'unknown',
'file_size': None,
'extracted_data': None,
'processing_notes': ['File path does not exist.']
}]
try:
file_size = file_path.stat().st_size
if file_size > self.max_file_size:
logger.warning(f"File '{file_path.name}' size ({file_size} bytes) exceeds maximum allowed size ({self.max_file_size} bytes).")
return [{
'source': 'file',
'filename': file_path.name,
'file_size': file_size,
'extracted_data': None,
'processing_notes': ['File size exceeds limit.']
}]
# Use a temporary directory for archive extraction
with tempfile.TemporaryDirectory() as temp_dir:
temp_dir_path = Path(temp_dir)
if file_path.suffix.lower() in self.archive_extensions:
dataset.extend(self._process_archive(file_path, temp_dir_path))
elif file_path.suffix.lower() in self.supported_extensions:
dataset.extend(self._process_single_file(file_path))
else:
logger.warning(f"Unsupported file type for processing: '{file_path.name}'. Attempting to read as plain text.")
try:
content_bytes = file_path.read_bytes()
encoding_detection = chardet.detect(content_bytes)
encoding = encoding_detection['encoding'] or 'utf-8'
raw_content = content_bytes.decode(encoding, errors='replace')
dataset.append({
'source': 'file',
'filename': file_path.name,
'file_size': file_size,
'mime_type': mimetypes.guess_type(file_path.name)[0] or 'unknown/unknown',
'extracted_data': {'plain_text': raw_content},
'processing_notes': ['Processed as plain text (unsupported extension).']
})
except Exception as e:
logger.error(f"Error reading or processing unsupported file '{file_path.name}' as text: {e}")
dataset.append({
'source': 'file',
'filename': file_path.name,
'file_size': file_size,
'mime_type': mimetypes.guess_type(file_path.name)[0] or 'unknown/unknown',
'extracted_data': None,
'processing_notes': [f'Unsupported file type and failed to read as text: {e}']
})
except Exception as e:
logger.error(f"Error processing file '{file_path.name}': {str(e)}")
dataset.append({
'source': 'file',
'filename': file_path.name,
'file_size': file_size if 'file_size' in locals() else None,
'extracted_data': None,
'processing_notes': [f'Overall file processing error: {str(e)}']
})
return dataset
def _is_archive(self, filepath: Union[str, Path]) -> bool:
"""Check if file is an archive"""
p = Path(filepath) if isinstance(filepath, str) else filepath
return p.suffix.lower() in self.archive_extensions
def _process_single_file(self, file_path: Path) -> List[Dict]:
"""Process a single file with enhanced character extraction and format-specific handling"""
dataset_entries = []
filename = file_path.name
file_size = file_path.stat().st_size
mime_type, _ = mimetypes.guess_type(file_path)
mime_type = mime_type or 'unknown/unknown'
file_extension = file_path.suffix.lower()
logger.info(f"Processing single file: '{filename}' ({mime_type}, {file_size} bytes)")
raw_content: Optional[str] = None
extracted_data: Any = None
processing_notes: List[str] = []
try:
content_bytes = file_path.read_bytes()
encoding_detection = chardet.detect(content_bytes)
encoding = encoding_detection['encoding'] or 'utf-8'
raw_content = content_bytes.decode(encoding, errors='replace')
is_explicit_json = mime_type == 'application/json' or file_extension == '.json'
looks_like_json = raw_content.strip().startswith('{') or raw_content.strip().startswith('[')
if is_explicit_json or looks_like_json:
try:
extracted_data = json.loads(raw_content)
processing_notes.append("Parsed as JSON.")
if not is_explicit_json:
processing_notes.append("Note: Content looked like JSON despite extension/mime.")
logger.warning(f"File '{filename}' identified as JSON content despite extension/mime.")
mime_type = 'application/json'
except json.JSONDecodeError as e:
processing_notes.append(f"Failed to parse as JSON: {e}.")
if is_explicit_json:
logger.error(f"Explicit JSON file '{filename}' has invalid format: {e}")
else:
logger.warning(f"Content of '{filename}' looks like JSON but failed to parse: {e}")
except Exception as e:
processing_notes.append(f"Error processing JSON: {e}.")
logger.error(f"Error processing JSON in '{filename}': {e}")
looks_like_xml = extracted_data is None and raw_content.strip().startswith('<') and raw_content.strip().endswith('>')
is_explicit_xml = extracted_data is None and (mime_type in ('application/xml', 'text/xml') or mime_type.endswith('+xml') or file_extension in ('.xml', '.xsd'))
if extracted_data is None and (is_explicit_xml or looks_like_xml):
try:
root = ET.fromstring(raw_content)
extracted_data = ET.tostring(root, encoding='unicode', method='xml')
processing_notes.append("Parsed as XML (text representation).")
if not is_explicit_xml:
processing_notes.append("Note: Content looked like XML despite extension/mime.")
if 'xml' not in mime_type: mime_type = 'application/xml'
except ET.ParseError as e:
processing_notes.append(f"Failed to parse as XML: {e}.")
if is_explicit_xml:
logger.error(f"Explicit XML file '{filename}' has invalid format: {e}")
else:
logger.warning(f"Content of '{filename}' looks like XML but failed to parse: {e}")
except Exception as e:
processing_notes.append(f"Error processing XML: {e}.")
logger.error(f"Error processing XML in '{filename}': {e}")
is_explicit_csv = extracted_data is None and (mime_type == 'text/csv' or file_extension == '.csv')
looks_like_csv = extracted_data is None and (',' in raw_content or ';' in raw_content) and ('\n' in raw_content or len(raw_content.splitlines()) > 1)
if extracted_data is None and (is_explicit_csv or looks_like_csv):
try:
dialect = 'excel'
try:
sample = '\n'.join(raw_content.splitlines()[:10])
if sample:
dialect = csv.Sniffer().sniff(sample).name
logger.debug(f"Sniffer detected CSV dialect: {dialect} for '{filename}'")
except csv.Error:
logger.debug(f"Sniffer failed to detect dialect for '{filename}', using 'excel'.")
dialect = 'excel'
csv_reader = csv.reader(io.StringIO(raw_content), dialect=dialect)
rows = list(csv_reader)
if rows:
max_rows_preview = 100
extracted_data = {
'headers': rows[0] if rows and rows[0] else None,
'rows': rows[1:max_rows_preview+1] if len(rows) > 1 else []
}
if len(rows) > max_rows_preview + 1:
processing_notes.append(f"CSV data rows truncated to {max_rows_preview}.")
processing_notes.append("Parsed as CSV.")
if not is_explicit_csv:
processing_notes.append("Note: Content looked like CSV despite extension/mime.")
mime_type = 'text/csv'
else:
extracted_data = "Empty CSV"
processing_notes.append("Parsed as empty CSV.")
if not is_explicit_csv:
processing_notes.append("Note: Content looked like CSV but was empty.")
except Exception as e:
processing_notes.append(f"Failed to parse as CSV: {e}.")
logger.warning(f"Failed to parse CSV from '{filename}': {e}")
if extracted_data is None:
try:
extracted_text = None
if file_extension == '.pdf' and PDF_SUPPORT:
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as tmp_file:
tmp_file.write(content_bytes)
temp_path = Path(tmp_file.name)
try:
reader = PdfReader(temp_path)
text_content = "".join(page.extract_text() or "" for page in reader.pages)
extracted_text = text_content
processing_notes.append("Extracted text from PDF.")
finally:
if temp_path.exists(): temp_path.unlink()
elif file_extension == '.docx' and DOCX_SUPPORT:
with tempfile.NamedTemporaryFile(delete=False, suffix='.docx') as tmp_file:
tmp_file.write(content_bytes)
temp_path = Path(tmp_file.name)
try:
document = Document(temp_path)
text_content = "\n".join(paragraph.text for paragraph in document.paragraphs)
extracted_text = text_content
processing_notes.append("Extracted text from DOCX.")
finally:
if temp_path.exists(): temp_path.unlink()
elif file_extension == '.rtf' and RTF_SUPPORT:
try:
# Need to read RTF content as text, not bytes, for pyth's Rtf15Reader
doc = Rtf15Reader.read(io.StringIO(raw_content))
text_content = PlaintextWriter.write(doc).getvalue()
extracted_text = text_content
processing_notes.append("Extracted text from RTF.")
except Exception as e:
processing_notes.append(f"RTF extraction error: {e}")
logger.warning(f"Failed to extract RTF text from '{filename}': {e}")
elif file_extension == '.odt' and ODT_SUPPORT:
with tempfile.NamedTemporaryFile(delete=False, suffix='.odt') as tmp_file:
tmp_file.write(content_bytes)
temp_path = Path(tmp_file.name)
try:
text_doc = OpenDocumentText(temp_path)
paragraphs = text_doc.getElementsByType(odftext.P)
text_content = "\n".join("".join(node.text for node in p.childNodes) for p in paragraphs)
extracted_text = text_content
processing_notes.append("Extracted text from ODT.")
finally:
if temp_path.exists(): temp_path.unlink()
elif file_extension in ['.doc', '.ppt', '.pptx', '.xls', '.xlsx']:
processing_notes.append(f"Automatic text extraction for {file_extension.upper()} not fully implemented.")
logger.warning(f"Automatic text extraction for {file_extension.upper()} not fully implemented for '{filename}'.")
if extracted_text is not None:
max_extracted_text_size = 10000
extracted_data = {'text': extracted_text[:max_extracted_text_size]}
if len(extracted_text) > max_extracted_text_size:
extracted_data['text'] += "..."
processing_notes.append("Extracted text truncated.")
except ImportError as e:
processing_notes.append(f"Missing dependency for document type ({e}). Cannot extract text.")
except Exception as e:
processing_notes.append(f"Error during document text extraction: {e}")
logger.warning(f"Error during document text extraction for '{filename}': {e}")
if extracted_data is None:
extracted_data = {'plain_text': raw_content}
processing_notes.append("Stored as plain text.")
if mime_type in ['unknown/unknown', 'application/octet-stream']:
guessed_text_mime, _ = mimetypes.guess_type('dummy.txt')
if guessed_text_mime: mime_type = guessed_text_mime
except Exception as e:
logger.error(f"Fatal error processing single file '{filename}': {e}")
processing_notes.append(f"Fatal processing error: {e}")
raw_content = None
extracted_data = None
entry = {
'source': 'file',
'filename': filename,
'file_size': file_size,
'mime_type': mime_type,
'created': datetime.fromtimestamp(file_path.stat().st_ctime).isoformat() if file_path.exists() else None,
'modified': datetime.fromtimestamp(file_path.stat().st_mtime).isoformat() if file_path.exists() else None,
'raw_content': raw_content,
'extracted_data': extracted_data,
'processing_notes': processing_notes
}
dataset_entries.append(entry)
return dataset_entries
def _process_archive(self, archive_path: Path, extract_to: Path) -> List[Dict]:
"""Process an archive file with enhanced extraction"""
dataset = []
archive_extension = archive_path.suffix.lower()
logger.info(f"Processing archive: '{archive_path.name}'")
try:
if archive_extension == '.zip':
if zipfile.is_zipfile(archive_path):
with zipfile.ZipFile(archive_path, 'r') as zip_ref:
for file_info in zip_ref.infolist():
# Prevent Zip Slip vulnerability
sanitized_filename = Path(file_info.filename).name # Takes only the base name
extracted_file_path = extract_to / sanitized_filename
if file_info.file_size > 0 and not file_info.filename.endswith('/'):
try:
# Use extract method with path to temp_dir for safety
zip_ref.extract(file_info, path=extract_to)
extracted_file_path = extract_to / file_info.filename # Get the actual extracted path
if extracted_file_path.suffix.lower() in self.supported_extensions and not self._is_archive(extracted_file_path):
dataset.extend(self._process_single_file(extracted_file_path))
elif extracted_file_path.suffix.lower() in self.archive_extensions:
logger.info(f"Found nested archive '{file_info.filename}', processing recursively.")
dataset.extend(self._process_archive(extracted_file_path, extract_to))
else:
logger.debug(f"Skipping unsupported file in archive: '{file_info.filename}'")
except Exception as e:
logger.warning(f"Error extracting/processing file '{file_info.filename}' from zip '{archive_path.name}': {e}")
finally:
# Clean up the extracted file immediately
if extracted_file_path.exists():
try:
extracted_file_path.unlink()
except OSError as e:
logger.warning(f"Failed to clean up extracted file {extracted_file_path}: {e}")
else:
logger.error(f"'{archive_path.name}' is not a valid zip file.")
elif archive_extension in ('.tar', '.gz', '.tgz'): # .tgz is often tar.gz
try:
mode = 'r'
if archive_extension in ('.tar.gz', '.tgz'): mode = 'r:gz' # Handle .tar.gz and .tgz
with tarfile.open(archive_path, mode) as tar_ref:
for member in tar_ref.getmembers():
if member.isfile():
# Prevent Tar Slip vulnerability
sanitized_filename = Path(member.name).name # Takes only the base name
extracted_file_path = extract_to / sanitized_filename
try:
# Use extractfile method and write manually for better control/safety
member_file = tar_ref.extractfile(member)
if member_file:
with open(extracted_file_path, 'wb') as outfile:
outfile.write(member_file.read())
member_file.close() # Close the BytesIO object
if extracted_file_path.suffix.lower() in self.supported_extensions and not self._is_archive(extracted_file_path):
dataset.extend(self._process_single_file(extracted_file_path))
elif extracted_file_path.suffix.lower() in self.archive_extensions:
logger.info(f"Found nested archive '{member.name}', processing recursively.")
dataset.extend(self._process_archive(extracted_file_path, extract_to))
else:
logger.warning(f"Could not get file-like object for {member.name} from tar.")
except Exception as e:
logger.warning(f"Error extracting/processing file '{member.name}' from tar '{archive_path.name}': {e}")
finally:
# Clean up the extracted file immediately
if extracted_file_path.exists():
try:
extracted_file_path.unlink()
except OSError as e:
logger.warning(f"Failed to clean up extracted file {extracted_file_path}: {e}")
except tarfile.TarError as e:
logger.error(f"Error processing TAR archive '{archive_path.name}': {e}")
elif archive_extension == '.gz': # Handle standalone .gz (single file compression)
extracted_name = archive_path.stem # Get filename without .gz
extracted_path = extract_to / extracted_name
try:
with gzip.open(archive_path, 'rb') as gz_file, open(extracted_path, 'wb') as outfile:
outfile.write(gz_file.read())
# Process the extracted file
if extracted_path.suffix.lower() in self.supported_extensions and not self._is_archive(extracted_path):
dataset.extend(self._process_single_file(extracted_path))
elif extracted_path.suffix.lower() in self.archive_extensions:
logger.info(f"Found nested archive '{extracted_name}', processing recursively.")
dataset.extend(self._process_archive(extracted_path, extract_to))
else:
logger.debug(f"Skipping unsupported file (from gz): '{extracted_name}'")
except gzip.BadGzipFile as e:
logger.error(f"Error processing GZIP file '{archive_path.name}': {e}")
except Exception as e:
logger.error(f"Error extracting/processing from GZIP '{archive_path.name}': {e}")
finally:
# Clean up the extracted file immediately
if extracted_path.exists():
try:
extracted_path.unlink()
except OSError as e:
logger.warning(f"Failed to clean up extracted file {extracted_path}: {e}")
elif archive_extension in ('.bz2', '.7z', '.rar'):
logger.warning(f"Support for {archive_extension} archives is not yet fully implemented and requires external tools/libraries.")
except Exception as e:
logger.error(f"Overall archive processing error for '{archive_path.name}': {e}")
return dataset
def chunk_data(self, data: Union[Dict, List], max_size: int = 2953) -> List[Dict]:
"""Enhanced data chunking with sequence metadata"""
try:
# Ensure data is a list of items for consistent chunking
if not isinstance(data, list):
logger.warning("Data for chunking is not a list. Wrapping it in a list.")
data_list = [data]
else:
data_list = data
# JSON dump the entire list first
json_str = json.dumps(data_list, ensure_ascii=False, separators=(',', ':'))
total_length = len(json_str)
# Estimate overhead for metadata + some buffer
# Example metadata: {"idx":0,"tc":1,"tl":1000,"hash":1234567890,"data":"..."}
# A rough estimate of the metadata string length
# Assuming max 5 digits for idx/tc, 10 for tl, 10 for hash, plus keys, colons, commas, quotes
# {"idx":NNNNN,"tc":NNNNN,"tl":NNNNNNNNNN,"hash":NNNNNNNNNN,"data":""}
# ~ 7 + 5 + 6 + 5 + 6 + 10 + 7 + 10 + 7 + 0 + 2 + 4*3 (commas/colons) + 2*2 (quotes) = ~ 80-100 characters
# Let's use a slightly safer estimate
overhead_estimate = len(json.dumps({"idx": 99999, "tc": 99999, "tl": 9999999999, "hash": 9999999999, "data": ""}, separators=(',', ':'))) + 50 # Add buffer
# Max QR code capacity for alphanumeric is higher than byte/binary.
# Max size 2953 is for bytes. For alphanumeric, it's 4296.
# We are encoding JSON (mostly alphanumeric, but can contain non-ASCII).
# Using byte capacity (2953) is safer. Let's stick to 2953 as the max_size input.
effective_chunk_size = max_size - overhead_estimate
if effective_chunk_size <= 0:
logger.error(f"Max QR size ({max_size}) is too small for metadata overhead ({overhead_estimate}). Cannot chunk.")
return []
if total_length <= effective_chunk_size:
# Single chunk case
chunk_data = json_str
chunk = {
"idx": 0,
"tc": 1,
"tl": total_length,
"hash": hash(chunk_data) & 0xFFFFFFFF, # Use a simple hash
"data": chunk_data
}
return [chunk]
# Multi-chunk case
num_chunks = math.ceil(total_length / effective_chunk_size)
chunks = []
current_pos = 0
for i in range(num_chunks):
end_pos = min(current_pos + effective_chunk_size, total_length)
chunk_data_str = json_str[current_pos:end_pos]
chunk = {
"idx": i,
"tc": num_chunks,
"tl": total_length,
"hash": hash(chunk_data_str) & 0xFFFFFFFF, # Hash each chunk
"data": chunk_data_str
}
chunks.append(chunk)
current_pos = end_pos
if current_pos < total_length:
logger.error(f"Chunking logic error: Only processed {current_pos} of {total_length} characters.")
# This should not happen with ceil and min, but as a safeguard
return [] # Indicate failure
logger.info(f"Chunked data into {num_chunks} chunks for QR codes.")
return chunks
except Exception as e:
logger.error(f"Error chunking data: {e}")
return []
def generate_stylish_qr(data: Union[str, Dict],
filename: str,
size: int = 10,
border: int = 4,
fill_color: str = "#000000",
back_color: str = "#FFFFFF") -> str:
"""Generate a stylish QR code with enhanced visual appeal"""
try:
qr = qrcode.QRCode(
version=None, # Let the library determine the optimal version
error_correction=qrcode.constants.ERROR_CORRECT_M, # Medium error correction
box_size=size,
border=border
)
# Data to encode should be a string, typically the JSON chunk
if isinstance(data, dict):
# Ensure it's dumped to a string if it's a dict chunk
data_to_encode = json.dumps(data, ensure_ascii=False, separators=(',', ':'))
else:
# Assume it's already the string data chunk
data_to_encode = str(data)
qr.add_data(data_to_encode)
qr.make(fit=True) # Fit the QR code size to the data
qr_image = qr.make_image(fill_color=fill_color, back_color=back_color)
# qr_image = qr_image.convert('RGBA') # Conversion might not be needed for simple fill/back colors
# Optional: Add a simple gradient overlay for style (can be resource intensive)
# try:
# gradient = Image.new('RGBA', qr_image.size, (0, 0, 0, 0))
# draw = ImageDraw.Draw(gradient)
# # Example: slight horizontal fade
# for i in range(qr_image.width):
# alpha = int(255 * (i/qr_image.width) * 0.05) # 5% fade
# draw.line([(i, 0), (i, qr_image.height)], fill=(0, 0, 0, alpha))
# final_image = Image.alpha_composite(qr_image, gradient)
# except Exception as e:
# logger.warning(f"Failed to add gradient overlay to QR code: {e}. Using plain QR.")
# final_image = qr_image
# Using the plain image for simplicity and performance unless gradient is crucial
final_image = qr_image
output_path = QR_CODES_DIR / filename
# Use PNG for lossless quality, 90 quality is for JPEGs but harmless here
final_image.save(output_path, format='PNG')
return str(output_path)
except Exception as e:
logger.error(f"QR generation error: {e}")
return ""
def generate_qr_codes(data: List[Dict], combined: bool = True) -> List[str]:
"""Generate QR codes with enhanced visual appeal and metadata"""
# Ensure data is a list of dictionaries as expected
if not isinstance(data, list):
logger.error("generate_qr_codes received data that is not a list.")
return []
if not all(isinstance(item, dict) for item in data):
logger.error("generate_qr_codes received a list containing non-dictionary items.")
return []
try:
file_processor = EnhancedFileProcessor() # Use the processor for chunking
paths = []
if combined:
# Chunk the entire list of data dictionaries
chunks = file_processor.chunk_data(data)
if not chunks:
logger.warning("No chunks generated for combined data.")
return []
for i, chunk in enumerate(chunks):
# Filename includes chunk index and total chunks
filename = f'combined_qr_{int(time.time())}_{i+1}_of_{len(chunks)}.png'
qr_path = generate_stylish_qr(
data=chunk, # Pass the chunk dictionary
filename=filename,
fill_color="#1a365d",
back_color="#ffffff"
)
if qr_path:
paths.append(qr_path)
else:
logger.warning(f"Failed to generate QR for combined chunk {i+1}/{len(chunks)}.")
else:
# Chunk each item individually
if data:
for idx, item in enumerate(data):
# Chunk the single item (wrapped in a list for chunk_data consistency)
chunks = file_processor.chunk_data([item]) # Pass item as a list
if not chunks:
logger.warning(f"No chunks generated for item {idx+1}.")
continue
for chunk_idx, chunk in enumerate(chunks):
# Filename includes item index, chunk index, and total chunks for this item
filename = f'item_{idx+1}_chunk_{chunk_idx+1}_of_{len(chunks)}_{int(time.time())}.png'
qr_path = generate_stylish_qr(
data=chunk, # Pass the chunk dictionary
filename=filename,
fill_color="#1a365d",
back_color="#ffffff"
)
if qr_path:
paths.append(qr_path)
else:
logger.warning(f"Failed to generate QR for item {idx+1} chunk {chunk_idx+1}/{len(chunks)}.")
else:
logger.warning("No items in data list to process individually for QR codes.")
logger.info(f"Generated {len(paths)} QR codes.")
return paths
except Exception as e:
logger.error(f"Error generating QR codes: {e}")
return []
# --- Chatbot Logic ---
def respond_to_chat(
message: str,
chat_history: List[Tuple[str, str]],
chatbot_data: Optional[List[Dict]],
current_filtered_df_state: Optional[pd.DataFrame]
) -> Tuple[List[Tuple[str, str]], Optional[List[Dict]], Optional[pd.DataFrame]]:
"""
Responds to user chat messages based on the loaded JSON data.
Manages and returns the state of the filtered DataFrame.
"""
# Initialize chat_history if it's None (Gradio might pass None initially)
if chat_history is None:
chat_history = []
if chatbot_data is None or not chatbot_data:
chat_history.append((message, "Please process some data first using the other tabs before chatting."))
return chat_history, chatbot_data, current_filtered_df_state # Return existing state
# Append user message to history immediately
chat_history.append((message, None)) # Use None as a placeholder for the assistant's response
response = ""
lower_message = message.lower().strip()
# Initialize new_filtered_df_state with the current state to preserve it unless a filter changes it
new_filtered_df_state = current_filtered_df_state
df = None
try:
# Attempt to create a DataFrame from the full chatbot_data for analysis
# This flattens the structure for easier querying with pandas
flat_data = []
def flatten_item(d, parent_key='', sep='_'):
items = {}
if isinstance(d, dict):
for k, v in d.items():
new_key = parent_key + sep + k if parent_key else k
if isinstance(v, (dict, list)):
# Recursively flatten nested dicts/lists
nested_items = flatten_item(v, new_key, sep=sep)
items.update(nested_items)
else:
# Add primitive values directly
items[new_key] = v
elif isinstance(d, list):
# Flatten list items, creating keys like parent_key_0, parent_key_1, etc.
for i, elem in enumerate(d):
nested_items = flatten_item(elem, f'{parent_key}{sep}{i}' if parent_key else str(i), sep=sep)
items.update(nested_items)
# If d is a primitive (int, str, bool, None), it won't add anything here, which is fine
# as primitives are handled in the dict/list branches.
return items
# Process each top-level item in chatbot_data
for i, item in enumerate(chatbot_data):
if isinstance(item, dict):
# Flatten the entire dictionary item
flat_item = flatten_item(item)
flat_data.append(flat_item)
# If chatbot_data contains non-dict top-level items, flatten them too
elif isinstance(item, (list, str, int, float, bool, type(None))):
flat_data.append({'item_value': item}) # Wrap primitives in a dict
except Exception as e:
# Handle exceptions that may occur during processing
response = f"An error occurred: {str(e)}"
chat_history.append((message, response)) # Append error message to chat history
if flat_data:
try:
# Create DataFrame. Use errors='ignore' for columns with mixed types that can't be coerced
df = pd.DataFrame(flat_data)
# Convert object columns to string type explicitly to avoid future warnings/errors
for col in df.columns:
if df[col].dtype == 'object':
df[col] = df[col].astype(str)
logger.debug(f"Created DataFrame with shape: {df.shape}")
logger.debug(f"DataFrame columns: {list(df.columns)}")
except Exception as e:
logger.warning(f"Could not create pandas DataFrame from processed data: {e}. Falling back to manual processing.")
df = None
else:
logger.warning("Flattened data is empty. Cannot create DataFrame.")
df = None
except Exception as e:
logger.error(f"Error during DataFrame creation from chatbot_data: {e}")
df = None
response = f"An error occurred while preparing data for analysis: {e}"
# --- Complex Queries and Analysis ---
# These operations should primarily act on the FULL dataframe 'df'
# unless the user explicitly asks about the 'filtered' data.
# The filter command itself updates `new_filtered_df_state`.
if df is not None and not response: # Proceed with analysis if DataFrame exists and no error yet
# List available columns (from the full DataFrame)
if "what columns are available" in lower_message or "list columns" in lower_message:
response = f"The available columns in the full dataset are: {', '.join(df.columns)}"
# Describe a specific column (from the full DataFrame)
match = re.search(r'describe column (\w+)', lower_message)
if match:
column_name = match.group(1)
if column_name in df.columns:
# Handle non-numeric describe gracefully
try:
description = df[column_name].describe().to_string()
response = f"Description for column '{column_name}':\n```\n{description}\n```"
except Exception as e:
response = f"Could not generate description for column '{column_name}': {e}"
logger.warning(f"Error describing column '{column_name}': {e}")
else:
response = f"I couldn't find a column named '{column_name}'. Available columns are: {', '.join(df.columns)}"
# How many unique values in a column? (from the full DataFrame)
match = re.search(r'how many unique values in (\w+)', lower_message)
if match:
column_name = match.group(1)
if column_name in df.columns:
try:
unique_count = df[column_name].nunique()
response = f"There are {unique_count} unique values in the '{column_name}' column (in the full dataset)."
except Exception as e:
response = f"Could not count unique values for column '{column_name}': {e}"
logger.warning(f"Error counting unique values for column '{column_name}': {e}")
else:
response = f"I couldn't find a column named '{column_name}' in the data. Available columns are: {', '.join(df.columns)}"
# What is the average/sum/min/max of a numeric column? (from the full DataFrame)
match = re.search(r'what is the (average|sum|min|max) of (\w+)', lower_message)
if match:
operation, column_name = match.groups()
if column_name in df.columns:
try:
# Attempt to convert to numeric, coercing errors to NaN, then drop NaNs
numeric_col = pd.to_numeric(df[column_name], errors='coerce').dropna()
if not numeric_col.empty:
if operation == 'average':
result = numeric_col.mean()
response = f"The average of '{column_name}' is {result:.2f}."
elif operation == 'sum':
result = numeric_col.sum()
response = f"The sum of '{column_name}' is {result:.2f}."
elif operation == 'min':
result = numeric_col.min()
response = f"The minimum of '{column_name}' is {result}."
elif operation == 'max':
result = numeric_col.max()
response = f"The maximum of '{column_name}' is {result}."
else:
response = "I can calculate average, sum, min, or max." # Should not reach here due to regex
else:
response = f"The column '{column_name}' does not contain numeric values that I can analyze."
except Exception as e:
response = f"An error occurred while calculating the {operation} of '{column_name}': {e}"
logger.error(f"Error calculating {operation} for column '{column_name}': {e}")
else:
response = f"I couldn't find a column named '{column_name}'. Available columns are: {', '.join(df.columns)}"
# Enhanced Filter data based on more complex conditions
# This section *updates* `new_filtered_df_state` based on the filter command.
# It should filter from the *full* dataframe (`df`).
filter_match = re.search(
r'(?:filter|show items|show me items|find entries|select items|get items)\s+' # Optional action phrases
r'(?:where|by|for|with|if)\s+' # Keyword indicating condition
r'(\w+)\s+' # Column name
r'(is|equals?|==|!=|>=?|<=?|contains?|starts with|ends with)\s+' # Operator
r'([\'"]?[\w\s.-]+[\'"]?)', # Value (allows spaces, dots, hyphens if quoted, or single words)
lower_message
)
if filter_match:
column_name, operator, value_str = filter_match.groups()
column_name = column_name.strip()
operator = operator.strip().lower()
value_str = value_str.strip().strip("'\"")
logger.info(f"Filter request: Column='{column_name}', Operator='{operator}', Value='{value_str}'")
if df is None:
response = "No data available to filter. Please process data first."
new_filtered_df_state = None # Ensure state is None if no data
elif column_name not in df.columns:
response = f"I couldn't find a column named '{column_name}'. Available columns are: {', '.join(df.columns)}"
new_filtered_df_state = None # Clear previous filter if column not found
else:
# Always filter from the original full dataframe 'df'
active_df_to_filter = df.copy()
col_series_original = active_df_to_filter[column_name] # Use original series for type checks
try:
# Attempt to infer value type for comparison and prepare column series
target_value: Any
condition = None # Initialize condition
# Handle numeric comparisons
if operator in ['>', '>=', '<', '<=', '==', '!=']:
try:
# Try converting *both* column and value to numeric
col_series_numeric = pd.to_numeric(col_series_original, errors='coerce')
target_value = float(value_str)
# Apply numeric condition only where conversion was successful (not NaN)
if operator == '==': condition = col_series_numeric == target_value
elif operator == '!=': condition = col_series_numeric != target_value
elif operator == '>': condition = col_series_numeric > target_value
elif operator == '>=': condition = col_series_numeric >= target_value
elif operator == '<': condition = col_series_numeric < target_value
elif operator == '<=': condition = col_series_numeric <= target_value
# Ensure condition is a boolean Series of the same index as the DataFrame
if condition is not None:
condition = condition.fillna(False) # Treat NaNs in numeric column as not matching
except ValueError:
response = f"For numeric comparison on column '{column_name}', '{value_str}' is not a valid number."
target_value = None # Error case
condition = None # Clear condition on error
# Handle string comparisons (includes 'is', 'equals', '!=', 'contains', 'starts with', 'ends with')
elif operator in ['is', 'equals', '==', '!=', 'contains', 'contain', 'starts with', 'ends with']:
# Ensure column is treated as string for these operations
col_series_string = col_series_original.astype(str).str.lower()
target_value = str(value_str).lower() # Case-insensitive comparison
if operator in ['is', 'equals', '==']:
condition = col_series_string == target_value
elif operator == '!=':
condition = col_series_string != target_value
elif operator in ['contains', 'contain']:
condition = col_series_string.str.contains(target_value, na=False) # na=False treats NaN strings as not containing
elif operator == 'starts with':
condition = col_series_string.str.startswith(target_value, na=False)
elif operator == 'ends with':
condition = col_series_string.str.endswith(target_value, na=False)
# else: condition remains None for unsupported string ops (should be caught by regex)
# Handle boolean comparisons (if column type is bool or value looks like bool)
elif operator in ['is', 'equals', '==', '!='] and (pd.api.types.is_bool_dtype(col_series_original) or value_str.lower() in ['true', 'false']):
try:
col_series_bool = col_series_original.astype(bool) # Attempt to convert column to bool
target_value = value_str.lower() == 'true' # Convert value string to bool
if operator in ['is', 'equals', '==']:
condition = col_series_bool == target_value
elif operator == '!=':
condition = col_series_bool != target_value
# Ensure condition is boolean Series
if condition is not None:
condition = condition.fillna(False) # Treat NaNs/errors in bool conversion as not matching
except ValueError:
response = f"For boolean comparison on column '{column_name}', '{value_str}' is not a valid boolean value (true/false)."
target_value = None
condition = None
else:
# If none of the above types matched, the operator is likely invalid for the column type
response = f"Unsupported operator '{operator}' for column '{column_name}'. Please check column type or operator."
condition = None
if condition is not None:
# Apply condition to the active_df_to_filter (which is a copy of the full df)
filtered_results_df = active_df_to_filter[condition]
if not filtered_results_df.empty:
new_filtered_df_state = filtered_results_df # Update state with new filter result
num_results = len(filtered_results_df)
preview_rows = min(num_results, 5)
preview_cols = min(len(filtered_results_df.columns), 5)
# Select only the first `preview_cols` columns for the preview
preview_df = filtered_results_df.head(preview_rows).iloc[:, :preview_cols]
preview_str = preview_df.to_string(index=False)
response = (f"Found {num_results} items where '{column_name}' {operator} '{value_str}'.\n"
f"Here's a preview (first {preview_rows} rows, first {preview_cols} columns):\n```\n{preview_str}\n```\n"
f"The full filtered dataset ({num_results} items) is now available for download using the 'Download Filtered JSON' button.")
else:
new_filtered_df_state = pd.DataFrame() # Store empty DF for "no results"
response = f"No items found where '{column_name}' {operator} '{value_str}'."
# If condition is None (e.g. bad operator or type mismatch error) and response not already set, set generic invalid op message.
elif not response: # Avoid overwriting specific error from type check
response = f"Unsupported operator '{operator}' for column '{column_name}'. Please check column type or operator."
new_filtered_df_state = None
except ValueError as ve: # Specifically catch ValueError for target_value conversion
response = f"Invalid value '{value_str}' for comparison on column '{column_name}'. {ve}"
new_filtered_df_state = None # Clear on value error
logger.warning(f"ValueError during filter: {ve}")
except Exception as e:
new_filtered_df_state = None # Clear on other errors
response = f"An error occurred while applying the filter: {e}"
logger.error(f"Error applying filter (column='{column_name}', op='{operator}', val='{value_str}'): {e}")
# If the message was a filter, new_filtered_df_state is now set (or None/empty if error/no results)
# --- End of Enhanced Filter Logic ---
# If `response` is still empty, it means no filter query was matched by the filter_match regex.
# In this case, new_filtered_df_state (initialized from current_filtered_df_state) remains unchanged.
# Request structured output (e.g., as CSV or simplified JSON)
# This section should act on the *original* df unless specifically asked for filtered data export.
# The new download buttons handle filtered data export separately.
# Let's assume for now it acts on the original df, and a separate command would be needed for "export filtered data"
# If no filter query matched, and no other specific df query matched,
# then `response` might still be empty. `new_filtered_df_state` will be the same as `current_filtered_df_state`.
# The general queries below should not reset `new_filtered_df_state` unless it's a "clear" command.
elif "output as csv" in lower_message or "export as csv" in lower_message:
if df is not None and not df.empty:
csv_output = df.to_csv(index=False)
response = f"Here is the data in CSV format:\n```csv\n{csv_output[:1000]}...\n```\n(Output truncated for chat display)"
else:
response = "There is no data available to output as CSV."
elif "output as json" in lower_message or "export as json" in lower_message: # Note: "export as json" is different from download buttons
if df is not None and not df.empty:
json_output = df.to_json(orient='records', indent=2)
response = f"Here is the data in JSON format:\n```json\n{json_output[:1000]}...\n```\n(Output truncated for chat display)"
else:
response = "There is no data available to output as JSON."
# --- General Queries (if no DataFrame or specific query matched AND no filter was applied in this turn) ---
# These should not clear new_filtered_df_state unless it's a "clear chat"
if not response: # Only enter if no response has been generated by DataFrame/filter logic
if "how many items" in lower_message or "number of items" in lower_message:
# Check filtered state first, then full df, then raw chatbot_data list
if new_filtered_df_state is not None and not new_filtered_df_state.empty:
response = f"The currently filtered dataset has {len(new_filtered_df_state)} items."
if df is not None:
response += f" The original dataset has {len(df)} items."
elif df is not None: # Check df from original chatbot_data
response = f"There are {len(df)} items in the processed data."
elif isinstance(chatbot_data, list): # Fallback if df creation failed but chatbot_data is list
response = f"There are {len(chatbot_data)} top-level items in the processed data (not in DataFrame)."
elif isinstance(chatbot_data, dict):
response = "The processed data is a single dictionary, not a list of items."
else:
response = "The processed data is not a standard list or dictionary structure."
elif "what is the structure" in lower_message or "tell me about the data" in lower_message:
# Describe filtered data structure if available, otherwise full data structure
if new_filtered_df_state is not None and not new_filtered_df_state.empty:
response = f"The filtered data is a table with {len(new_filtered_df_state)} rows and columns: {', '.join(new_filtered_df_state.columns)}. "
if df is not None:
response += f"The original data has columns: {', '.join(df.columns)}."
else:
response += "Original data structure is not tabular."
elif df is not None:
response = f"The data is a table with {len(df)} rows and columns: {', '.join(df.columns)}."
elif isinstance(chatbot_data, list) and chatbot_data:
sample_item = chatbot_data[0]
response = f"The data is a list containing {len(chatbot_data)} items. The first item has the following top-level keys: {list(sample_item.keys())}."
elif isinstance(chatbot_data, dict):
response = f"The data is a dictionary with the following top-level keys: {list(chatbot_data.keys())}."
else:
response = "The processed data is not a standard list or dictionary structure that I can easily describe."
# "show me" without a filter condition might be ambiguous.
# Let's assume it refers to the original data or provide guidance.
elif "show me" in lower_message or "get me" in lower_message or "extract" in lower_message:
# This specific 'show me' without 'where' should not trigger a filter or clear existing filter state.
# It's a general request for data, which is too broad. Guide the user.
response = "If you want to filter the data, please use a phrase like 'show items where column_name is value'. If you want to see the raw data, consider using the download buttons."
# --- Speculation about Modifications ---
# These responses are purely informative and do not modify data or state.
elif "how can i modify" in lower_message or "how to change" in lower_message or "can i add" in lower_message or "can i remove" in lower_message:
response = "I cannot directly modify the data here, but I can tell you how you *could* modify it programmatically. What kind of change are you considering (e.g., adding an item, changing a value, removing a field)?"
elif "add a field" in lower_message or "add a column" in lower_message:
response = "To add a field (or column if the data is tabular), you would typically iterate through each item (or row) in the data and add the new key-value pair. For example, adding a 'status' field with a default value."
elif "change a value" in lower_message or "update a field" in lower_message:
response = "To change a value, you would need to identify the specific item(s) and the field you want to update. You could use a condition (like filtering) to find the right items and then assign a new value to the field."
elif "remove a field" in lower_message or "delete a column" in lower_message:
response = "To remove a field, you would iterate through each item and delete the specified key. Be careful, as this is irreversible."
elif "restructure" in lower_message or "change the format" in lower_message:
response = "Restructuring data involves transforming it into a different shape. This could mean flattening nested objects, grouping items, or pivoting data. This often requires writing custom code to map the old structure to the new one."
elif "what if i" in lower_message or "if i changed" in lower_message:
response = "Tell me what specific change you're contemplating, and I can speculate on the potential impact or how you might approach it programmatically."
# --- General Conversation / Fallback ---
elif "hello" in lower_message or "hi" in lower_message:
response = random.choice(["Hello! How can I help you understand the processed data?", "Hi there! What's on your mind about this data?", "Hey! Ask me anything about the data you've loaded."])
elif "thank you" in lower_message or "thanks" in lower_message:
response = random.choice(["You're welcome!", "Glad I could help.", "No problem! Let me know if you have more questions about the data."])
elif "clear chat" in lower_message: # This should be caught by button, but as text too
# Gradio handles clearing the chatbot component state via the button action.
# We just need to clear the filtered data state here.
response = "Chat history cleared." # Respond that chat is cleared
new_filtered_df_state = None # Also clear filtered data on "clear chat" command by text
elif not response: # Fallback if nothing else matched
response = random.choice([
"I can analyze the data you've processed. What would you like to know? Try asking to filter data, e.g., 'show items where status is active'.",
"Ask me about the number of items, the structure, or values of specific fields. You can also filter data.",
"I can perform basic analysis or filter the data. For example: 'filter by price > 100'.",
"Tell me what you want to extract or filter from the data. Use phrases like 'show items where ...'.",
"I'm equipped to filter your data. Try 'find entries where name contains widget'."
])
# --- End of main try block ---
except Exception, e:
logger.error(f"Chatbot runtime error: {e}")
response = f"An internal error occurred while processing your request: {e}"
response += "\nPlease try rephrasing your question or clear the chat history."
# On unexpected error, preserve the current_filtered_df_state rather than clearing or modifying it.
# new_filtered_df_state = current_filtered_df_state # This line is effectively already done by initialization
# --- Finally block (optional, but good practice if cleanup is needed) ---
# finally:
# # Any cleanup code can go here
# pass
if not response: # Final safety net for response, if it's somehow still empty
response = "I'm not sure how to respond to that. Please try rephrasing or ask for help on available commands."
# Update the last message in chat history with the generated response
# Find the last entry where the assistant's response is None
for i in reversed(range(len(chat_history))):
if chat_history[i][1] is None:
chat_history[i] = (chat_history[i][0], response)
break
# If no None placeholder was found (shouldn't happen with current logic), append as new entry
# else:
# chat_history.append((message, response))
# Ensure chat_history is in the format Gradio expects for type='messages'
# It should be a list of lists: [[user_msg, bot_msg], [user_msg, bot_msg], ...]
# The current format List[Tuple[str, str]] works with type='messages' as tuples are treated like lists.
return chat_history, chatbot_data, new_filtered_df_state
# --- Gradio Interface Definition ---
def create_modern_interface():
"""Create a modern and visually appealing Gradio interface"""
css = """
/* Modern color scheme */
:root {
--primary-color: #1a365d;
--secondary-color: #2d3748;
--accent-color: #4299e1;
--background-color: #f7fafc;
--success-color: #48bb78;
--error-color: #f56565;
--warning-color: #ed8936;
}
/* Container styling */
.container {
max-width: 1200px;
margin: auto;
padding: 2rem;
background-color: var(--background-color);
border-radius: 1rem;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
/* Component styling */
.input-container {
background-color: white;
padding: 1.5rem;
border-radius: 0.5rem;
border: 1px solid #e2e8f0;
margin-bottom: 1rem;
}
/* Button styling */
.primary-button {
background-color: var(--primary-color);
color: white;
padding: 0.75rem 1.5rem;
border-radius: 0.375rem;
border: none;
cursor: pointer;
transition: all 0.2s;
}
.primary-button:hover {
background-color: var(--accent-color);
transform: translateY(-1px);
}
/* Status messages */
.status {
padding: 1rem;
border-radius: 0.375rem;
margin: 1rem 0;
}
.status.success { background-color: #f0fff4; color: var(--success-color); }
.status.error { background-color: #fff5f5; color: var(--error-color); }
.status.warning { background-color: #fffaf0; color: var(--warning-color); }
/* Gallery styling */
.gallery {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 1rem;
padding: 1rem;
background-color: white;
border-radius: 0.5rem;
border: 1px solid #e2e8f0;
}
.gallery img {
width: 100%;
height: auto;
border-radius: 0.375rem;
transition: transform 0.2s;
}
.gallery img:hover {
transform: scale(1.05);
}
/* QR Code Viewport Styling */
.viewport-container {
display: grid;
gap: 0.5rem;
padding: 1rem;
background-color: white;
border-radius: 0.5rem;
border: 1px solid #e2e8f0;
margin-top: 1rem;
}
.viewport-item {
display: flex;
flex-direction: column;
align-items: center;
}
.viewport-item img {
width: 100%;
height: auto;
border-radius: 0.375rem;
transition: transform 0.2s;
max-width: 150px;
max-height: 150px;
}
"""
with gr.Blocks(css=css, title="Advanced Data Processor & QR Generator") as interface:
interface.head += """
<script>
let enabledStates = [];
function updateEnabledStates(checkbox) {
const index = parseInt(checkbox.dataset.index);
if (checkbox.checked) {
if (!enabledStates.includes(index)) {
enabledStates.push(index);
}
} else {
enabledStates = enabledStates.filter(item => item !== index);
}
const enabled_qr_codes_component = document.querySelector('[data-component-type="state"][data-state-name="enabled_qr_codes"]');
if (enabled_qr_codes_component) {
enabled_qr_codes_component.value = JSON.stringify(enabledStates);
enabled_qr_codes_component.dispatchEvent(new Event('input'));
}
console.log("Enabled QR Code Indices:", enabledStates);
}
</script>
"""
with gr.Row():
crawl_depth_slider = gr.Slider(
label="Crawl Depth",
minimum=0,
maximum=10,
value=0,
step=1,
interactive=True,
info="Select the maximum depth for crawling links (0-10)."
)
qr_code_paths = gr.State([])
chatbot_data = gr.State(None)
gr.Markdown("""
# 🌐 Advanced Data Processing & QR Code Generator
Transform your data into beautifully designed, sequenced QR codes with our cutting-edge processor.
""")
with gr.Tab("πŸ“ URL Processing"):
url_input = gr.Textbox(
label="Enter URLs (comma or newline separated)",
lines=5,
placeholder="https://example1.com\nhttps://example2.com",
value=""
)
with gr.Tab("πŸ“ File Input"):
file_input = gr.File(
label="Upload Files",
file_types=None,
file_count="multiple"
)
with gr.Tab("πŸ“‹ JSON Input"):
text_input = gr.TextArea(
label="Direct JSON Input",
lines=15,
placeholder="Paste your JSON data here...",
value=""
)
with gr.Row():
example_btn = gr.Button("πŸ“ Load Example", variant="secondary")
clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary")
with gr.Row():
combine_data = gr.Checkbox(
label="Combine all data into sequence",
value=True,
info="Generate sequential QR codes for combined data"
)
generate_qr_toggle = gr.Checkbox(
label="Generate QR Codes",
value=False, # Default to False as per task
info="Enable to generate QR codes for the processed data."
)
process_btn = gr.Button(
"πŸ”„ Process & Generate QR",
variant="primary"
)
output_json = gr.JSON(label="Processed Data")
output_gallery = gr.Gallery(
label="Generated QR Codes",
columns=3,
height=400,
show_label=True
)
output_text = gr.Textbox(
label="Processing Status",
interactive=False
)
with gr.Tab("πŸ–ΌοΈ QR Code Viewport") as viewport_tab:
viewport_output = gr.HTML(label="QR Code Sequence Viewport")
enabled_qr_codes = gr.State([])
with gr.Tab("πŸ€– Chat with Data") as chat_tab:
chat_history = gr.State([])
chatbot = gr.Chatbot(label="Data Chatbot", type='messages') # Set type to 'messages'
filtered_chatbot_df_state = gr.State(None) # To store the filtered DataFrame
with gr.Row():
chat_input = gr.Textbox(label="Your Message", placeholder="Ask me about the processed data...")
send_msg_btn = gr.Button("Send")
with gr.Row():
download_full_json_btn = gr.Button("Download Full JSON")
download_filtered_json_btn = gr.Button("Download Filtered JSON")
download_file_output = gr.File(label="Download Data", interactive=False) # For triggering download
clear_chat_btn = gr.Button("Clear Chat History")
# Event handlers must be defined within the Blocks context
def load_example():
example = {
"type": "product_catalog",
"items": [
{
"id": "123",
"name": "Premium Widget",
"description": "High-quality widget with advanced features",
"price": 299.99,
"category": "electronics",
"tags": ["premium", "featured", "new"]
},
{
"id": "456",
"name": "Basic Widget",
"description": "Reliable widget for everyday use",
"price": 149.99,
"category": "electronics",
"tags": ["basic", "popular"]
}
],
"metadata": {
"timestamp": datetime.now().isoformat(),
"version": "2.0",
"source": "example"
}
}
return json.dumps(example, indent=2)
def clear_input():
# Clear all input fields and the chatbot data state
return "", None, "", None
def update_viewport(paths, enabled_states):
if not paths:
return "<p>No QR codes generated yet.</p>"
num_qr_codes = len(paths)
# Determine grid columns based on the number of QRs, aiming for a roughly square layout
cols = math.ceil(math.sqrt(num_qr_codes))
cols = max(1, min(cols, 6)) # Clamp columns between 1 and 6
viewport_html = f'<div class="viewport-container" style="grid-template-columns: repeat({cols}, 1fr);">'
# Ensure enabled_states is a list of indices if it's None or doesn't match current paths
if enabled_states is None or len(enabled_states) != num_qr_codes:
enabled_states = list(range(num_qr_codes))
for i, path in enumerate(paths):
is_enabled = i in enabled_states
border = "border: 2px solid green;" if is_enabled else "border: 2px solid lightgray;"
opacity = "opacity: 1.0;" if is_enabled else "opacity: 0.5;"
# Use /file= prefix for Gradio to serve local files
viewport_html += f'<div class="viewport-item" id="qr_item_{i}">'
viewport_html += f'<img src="/file={path}" style="{border} {opacity}" alt="QR Code {i+1}">'
# Add checkbox with data-index for JS to identify which QR it controls
viewport_html += f'<label><input type="checkbox" data-index="{i}" {"checked" if is_enabled else ""} onchange="updateEnabledStates(this)"> Enable</label>'
viewport_html += '</div>'
viewport_html += '</div>'
return viewport_html
def on_qr_generation(qr_paths_list):
"""Handler to initialize enabled_qr_codes state after QR generation."""
if qr_paths_list is None:
num_qrs = 0
else:
num_qrs = len(qr_paths_list)
# Initially enable all generated QR codes
initial_enabled_states = list(range(num_qrs))
# Return the paths list and the initial enabled states
return qr_paths_list, initial_enabled_states
def process_inputs(urls, files, text, combine, crawl_depth, generate_qr_enabled):
"""Process all inputs and generate QR codes based on toggle"""
results = []
processing_status_messages = []
url_processor = EnhancedURLProcessor()
file_processor = EnhancedFileProcessor()
try:
if text and text.strip():
try:
json_data = json.loads(text)
results.append({
'source': 'json_input',
'extracted_data': json_data,
'timestamp': datetime.now().isoformat(),
'processing_notes': ['Parsed from direct JSON input.']
})
processing_status_messages.append("βœ… Successfully parsed direct JSON input.")
except json.JSONDecodeError as e:
processing_status_messages.append(f"❌ Invalid JSON format in text input: {str(e)}")
logger.error(f"Invalid JSON format in text input: {e}")
except Exception as e:
processing_status_messages.append(f"❌ Error processing direct JSON input: {str(e)}")
logger.error(f"Error processing direct JSON input: {e}")
if urls and urls.strip():
url_list = re.split(r'[,\n]', urls)
url_list = [url.strip() for url in url_list if url.strip()]
for url in url_list:
processing_status_messages.append(f"🌐 Processing URL: {url} with crawl depth {crawl_depth}...")
# Call fetch_content_with_depth which handles recursion
content_result = url_processor.fetch_content_with_depth(url, max_steps=crawl_depth)
# The result from fetch_content_with_depth is already structured
# It includes the main fetch_result and linked_extractions
if content_result: # Check if a result dictionary was returned
results.append(content_result)
# Provide status based on the fetch_result within the recursive structure
main_fetch_status = content_result.get('fetch_result', {}).get('status_code')
if main_fetch_status is not None and 200 <= main_fetch_status < 300:
processing_status_messages.append(f"βœ… Processed URL: {url} (Level 0, Status: {main_fetch_status})")
if content_result.get('processing_notes'):
processing_status_messages.append(f" Notes for {url}: {'; '.join(content_result['processing_notes'])}")
# Count successfully processed linked pages
def count_successful_fetches(crawl_result):
count = 0
if crawl_result and crawl_result.get('fetch_result') is not None:
status = crawl_result['fetch_result'].get('status_code')
if status is not None and 200 <= status < 300:
count += 1
for linked_result in crawl_result.get('linked_extractions', []):
count += count_successful_fetches(linked_result)
return count
total_attempted_links = len(content_result.get('linked_extractions', []))
total_successful_linked = count_successful_fetches({'linked_extractions': content_result.get('linked_extractions', [])}) # Wrap to match expected structure
if total_attempted_links > 0:
processing_status_messages.append(f" Processed {total_successful_linked}/{total_attempted_links} linked pages up to depth {crawl_depth}.")
else:
processing_status_messages.append(f"❌ Failed to fetch or process URL: {url} (Status: {main_fetch_status})")
if content_result.get('processing_notes'):
processing_status_messages.append(f" Notes for {url}: {'; '.join(content_result['processing_notes'])}")
else:
processing_status_messages.append(f"❌ Failed to process URL: {url} (No result returned)")
if files:
for file in files:
processing_status_messages.append(f"πŸ“ Processing file: {file.name}...")
file_results = file_processor.process_file(file)
if file_results:
results.extend(file_results)
processing_status_messages.append(f"βœ… Processed file: {file.name}")
for res in file_results:
if res.get('processing_notes'):
processing_status_messages.append(f" Notes for {res.get('filename', 'item')}: {'; '.join(res['processing_notes'])}")
else:
processing_status_messages.append(f"❌ Failed to process file: {file.name}")
# Add a default note if process_file returned empty list without notes
if not file_results and file and hasattr(file, 'name'):
processing_status_messages.append(f" No results returned for file: {file.name}")
qr_paths = []
final_json_output = None
if results:
final_json_output = results # Assign processed data regardless of QR generation
if generate_qr_enabled:
processing_status_messages.append("βš™οΈ Generating QR codes as requested...")
# generate_qr_codes expects a List[Dict]
qr_paths = generate_qr_codes(results, combine)
if qr_paths:
processing_status_messages.append(f"βœ… Successfully generated {len(qr_paths)} QR codes.")
else:
processing_status_messages.append("❌ Failed to generate QR codes (empty result or error). Check logs.")
else:
processing_status_messages.append("β˜‘οΈ QR code generation was disabled. Processed data is available.")
qr_paths = [] # Ensure it's empty
else:
processing_status_messages.append("⚠️ No valid content collected from inputs.")
final_json_output = [] # Ensure output_json is cleared if no results
except Exception as e:
logger.error(f"Overall processing error in process_inputs: {e}")
processing_status_messages.append(f"❌ An unexpected error occurred during processing: {str(e)}")
final_json_output = [] # Clear output on unexpected error
qr_paths = [] # Clear qrs on unexpected error
# Return the processed data, QR paths, status messages, and update chatbot_data state
return (
final_json_output,
[str(path) for path in qr_paths], # Return paths as strings for Gradio Gallery
"\n".join(processing_status_messages),
final_json_output # Update chatbot_data state
)
# --- Download Logic ---
def download_json_data(data_df: Optional[pd.DataFrame], filename_prefix: str) -> Optional[str]:
"""Helper function to convert DataFrame to JSON file for download."""
if data_df is None or data_df.empty:
logger.info(f"No data provided for download with prefix '{filename_prefix}'.")
return None
try:
# Convert DataFrame to list of dictionaries
data_list = data_df.to_dict(orient='records')
json_str = json.dumps(data_list, indent=2, ensure_ascii=False)
timestamp = int(time.time())
filename = f"{filename_prefix}_{timestamp}.json"
file_path = TEMP_DIR / filename
# Ensure temp directory exists (already done at startup, but good practice)
TEMP_DIR.mkdir(parents=True, exist_ok=True)
with open(file_path, 'w', encoding='utf-8') as f:
f.write(json_str)
logger.info(f"Successfully created JSON file for download: {file_path}")
# Return the path to the temporary file
return str(file_path)
except Exception as e:
logger.error(f"Error creating JSON file for {filename_prefix}: {e}")
return None
def handle_download_full_json(current_chatbot_data_state: Optional[List[Dict]]) -> Optional[str]:
"""Handler for the 'Download Full JSON' button."""
# This function receives the full processed data (List[Dict]) from the chatbot_data state
if not current_chatbot_data_state:
logger.info("No full data available to download.")
return None
try:
# Attempt to create a DataFrame from the full data state for consistent output structure
# This uses the same flattening logic as the chatbot
flat_data = []
def flatten_item_for_download(d, parent_key='', sep='_'):
items = {}
if isinstance(d, dict):
for k, v in d.items():
new_key = parent_key + sep + k if parent_key else k
if isinstance(v, (dict, list)):
nested_items = flatten_item_for_download(v, new_key, sep=sep)
items.update(nested_items)
else:
items[new_key] = v
elif isinstance(d, list):
for i, elem in enumerate(d):
nested_items = flatten_item_for_download(elem, f'{parent_key}{sep}{i}' if parent_key else str(i), sep=sep)
items.update(nested_items)
return items
for item in current_chatbot_data_state:
if isinstance(item, dict):
flat_data.append(flatten_item_for_download(item))
# Handle cases where top-level items might not be dicts, wrap them
elif isinstance(item, (list, str, int, float, bool, type(None))):
flat_data.append({'item_value': item})
if not flat_data:
logger.info("Full data flattened to empty list. Nothing to download.")
return None
df_to_download = pd.DataFrame(flat_data)
if df_to_download.empty:
logger.info("Full data resulted in an empty DataFrame. Nothing to download.")
return None
except Exception as e:
logger.error(f"Error converting full chatbot_data to DataFrame for download: {e}")
return None
# Pass the DataFrame to the generic download function
return download_json_data(df_to_download, "full_data")
def handle_download_filtered_json(current_filtered_df_state: Optional[pd.DataFrame]) -> Optional[str]:
"""Handler for the 'Download Filtered JSON' button."""
# This function receives the already filtered DataFrame from the state
if current_filtered_df_state is None or current_filtered_df_state.empty:
logger.info("No filtered data available to download.")
return None
# Pass the DataFrame directly to the generic download function
return download_json_data(current_filtered_df_state, "filtered_data")
# Connect event handlers within the Blocks context
example_btn.click(load_example, inputs=[], outputs=text_input)
clear_btn.click(clear_input, inputs=[], outputs=[url_input, file_input, text_input, chatbot_data])
process_btn.click(
process_inputs,
inputs=[url_input, file_input, text_input, combine_data, crawl_depth_slider, generate_qr_toggle],
outputs=[output_json, output_gallery, output_text, chatbot_data]
).then(
# This .then() is triggered after process_inputs completes and updates output_gallery
on_qr_generation,
inputs=[output_gallery], # Pass the list of QR paths from the gallery output
outputs=[qr_code_paths, enabled_qr_codes] # Update the state variables
)
# When the viewport tab is selected, update the viewport HTML
viewport_tab.select(update_viewport, inputs=[qr_code_paths, enabled_qr_codes], outputs=[viewport_output])
# Chatbot send button and text input submit events
send_msg_btn.click(
respond_to_chat,
inputs=[chat_input, chat_history, chatbot_data, filtered_chatbot_df_state],
outputs=[chatbot, chatbot_data, filtered_chatbot_df_state]
).then(
# Clear the chat input box after sending message
lambda: "",
inputs=None,
outputs=chat_input
)
chat_input.submit( # Allow submitting by pressing Enter in the text box
respond_to_chat,
inputs=[chat_input, chat_history, chatbot_data, filtered_chatbot_df_state], # Pass filtered_chatbot_df_state here too
outputs=[chatbot, chatbot_data, filtered_chatbot_df_state] # And return it
).then(
# Clear the chat input box after submitting
lambda: "",
inputs=None,
outputs=chat_input
)
# Clear chat history button
clear_chat_btn.click(
# Clear chat history component and the filtered data state
lambda: ([], None),
inputs=None,
outputs=[chatbot, filtered_chatbot_df_state]
)
# Download buttons
download_full_json_btn.click(
fn=handle_download_full_json,
inputs=[chatbot_data], # chatbot_data is the gr.State holding the full dataset (List[Dict])
outputs=[download_file_output] # The File component acts as the download trigger
)
download_filtered_json_btn.click(
fn=handle_download_filtered_json,
inputs=[filtered_chatbot_df_state], # This state holds the filtered DataFrame
outputs=[download_file_output] # The File component acts as the download trigger
)
gr.Markdown("""
### πŸš€ Features
- **Enhanced URL Scraping**: Extracts HTML text, title, meta description, links, and attempts parsing JSON/XML from URLs based on content type. Supports crawling links up to a specified depth. **(Now performs real fetching)**
- **Advanced File Processing**: Reads various text-based files (.txt, .md, .log etc.), HTML, XML, CSV, and attempts text extraction from common documents (.pdf, .docx, .rtf, .odt - *requires extra dependencies*). **(Now performs real file processing)**
- **Smart JSON Handling**: Parses valid JSON from direct input, files (.json or content), or URLs.
- **Archive Support**: Extracts and processes supported files from .zip, .tar, .gz archives. **(Now performs real extraction)**
- **Robust Encoding Detection**: Uses `chardet` for reliable character encoding identification.
- **Structured Output**: Provides a consistent JSON output format containing raw content (if applicable), extracted data, and processing notes for each processed item.
- **Sequential QR Codes**: Maintains data integrity across multiple codes by chunking the combined/individual processed data.
- **QR Code Viewport**: Visualize generated QR codes in a sequenced square grid with options to enable/disable individual codes for selective scanning/sharing.
- **Modern Design**: Clean, responsive interface with visual feedback.
- **Data Chatbot**: Interact conversationally with the processed JSON data to ask questions about its structure, content, or request specific information.
### πŸ’‘ Tips
1. **URLs**: Enter multiple URLs separated by commas or newlines. The processor will attempt to fetch and structure the content based on its type, following links up to the specified **Crawl Depth**.
2. **Files**: Upload any type of file. The processor will attempt to handle supported text-based files, archives (.zip, .tar, .gz), and specific document/structured formats.
3. **JSON**: Use the "Direct JSON Input" tab for pasting JSON data. The system also tries to detect JSON content in file uploads and URLs. Use the "Load Example" button to see a sample JSON structure.
4. **Dependencies**: Processing PDF, DOCX, RTF, and ODT files requires installing optional Python libraries (`PyPDF2`, `python-docx`, `pyth`, `odfpy`). Check the console logs for warnings if a library is missing.
5. **QR Codes**: Choose whether to "Combine all data into sequence" or generate separate sequences for each input item.
6. **Processing**: Monitor the "Processing Status" box for real-time updates and notes about errors or processing steps.
7. **Output**: The "Processed Data" JSON box shows the structured data extracted from your inputs. The "Generated QR Codes" gallery shows the QR code images.
8. **Chatbot**: After processing data, go to the "Chat with Data" tab to ask questions about the JSON output.
### βš™οΈ QR Code Viewport Instructions
1. Navigate to the **QR Code Viewport** tab after generating QR codes.
2. The generated QR codes will be displayed in a grid based on their total count.
3. Use the checkboxes below each QR code to enable or disable it for visual selection. Enabled codes have a green border and full opacity.
4. This viewport is currently for visualization and selection *within the UI*; it doesn't change the generated files themselves. You would manually select which physical QR codes to scan based on this view.
""")
return interface
def main():
"""Initialize and launch the application"""
try:
mimetypes.init()
interface = create_modern_interface()
interface.launch(
share=False, # Set to True to create a public link (requires auth token)
debug=False, # Set to True for detailed debug output
show_error=True, # Show errors in the UI
show_api=False # Hide API endpoint details
)
except Exception as e:
logger.error(f"Application startup error: {e}")
print(f"\nFatal Error: {e}\nCheck the logs for details.")
raise
if __name__ == "__main__":
# Ensure the script is run directly (not imported)
main()