Spaces:
Sleeping
Sleeping
Update Ingest.py
Browse files
Ingest.py
CHANGED
@@ -5,7 +5,6 @@ from langchain_community.document_loaders import DirectoryLoader
|
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain_community.vectorstores import FAISS
|
8 |
-
from faiss import IndexFlatL2 # Assuming using L2 distance for simplicity
|
9 |
|
10 |
# Initialize Ray
|
11 |
ray.init()
|
@@ -15,69 +14,51 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
|
|
15 |
|
16 |
# Directory where the FAISS index is saved
|
17 |
index_directory = 'ipc_embed_db'
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
# Create the FAISS index with L2 distance
|
24 |
-
logging.info("Creating a new FAISS index...")
|
25 |
-
index = IndexFlatL2(768) # Dimensionality of the embeddings
|
26 |
-
docstore = {i: text for i, text in enumerate(texts)}
|
27 |
-
index_to_docstore_id = {i: i for i in range(len(texts))}
|
28 |
-
faiss_db = FAISS(embedding_function, index, docstore, index_to_docstore_id)
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
faiss_db.save_local(index_directory)
|
39 |
-
logging.info("FAISS index saved
|
40 |
return faiss_db
|
41 |
|
42 |
-
# Function to load
|
43 |
-
def
|
44 |
-
if os.path.exists(
|
45 |
logging.info("Loading existing FAISS index...")
|
46 |
-
faiss_db = FAISS.load_local(index_directory,
|
47 |
logging.info("FAISS index loaded successfully.")
|
48 |
return faiss_db
|
49 |
else:
|
50 |
-
logging.info("FAISS index not found
|
51 |
-
return create_faiss_index(
|
52 |
|
53 |
-
# Load
|
54 |
-
|
55 |
-
loader = DirectoryLoader('data', glob="./*.txt")
|
56 |
-
documents = loader.load()
|
57 |
-
|
58 |
-
# Extract text from documents and split into manageable chunks
|
59 |
-
logging.info("Extracting and splitting texts from documents...")
|
60 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
|
61 |
-
texts = []
|
62 |
-
for document in documents:
|
63 |
-
if hasattr(document, 'get_text'):
|
64 |
-
text_content = document.get_text() # Adjust according to actual method
|
65 |
-
else:
|
66 |
-
text_content = "" # Default to empty string if no text method is available
|
67 |
-
texts.extend(text_splitter.split_text(text_content))
|
68 |
|
69 |
-
#
|
70 |
-
def embedding_function(text):
|
71 |
-
embeddings_model = HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT")
|
72 |
-
return embeddings_model.embed_query(text)
|
73 |
-
|
74 |
-
# Load or create the FAISS index dynamically
|
75 |
-
faiss_db = load_faiss_index(embedding_function)
|
76 |
-
|
77 |
-
# If you need to perform a search or interact with the FAISS index:
|
78 |
# db_retriever = faiss_db.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
79 |
|
80 |
# Shutdown Ray after the process
|
81 |
ray.shutdown()
|
82 |
-
|
83 |
logging.info("Process completed successfully.")
|
|
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain_community.vectorstores import FAISS
|
|
|
8 |
|
9 |
# Initialize Ray
|
10 |
ray.init()
|
|
|
14 |
|
15 |
# Directory where the FAISS index is saved
|
16 |
index_directory = 'ipc_embed_db'
|
17 |
+
index_path_faiss = os.path.join(index_directory, 'index.faiss')
|
18 |
+
index_path_pkl = os.path.join(index_directory, 'index.pkl')
|
19 |
|
20 |
+
# Ensure the index directory exists
|
21 |
+
os.makedirs(index_directory, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# Load documents
|
24 |
+
logging.info("Loading documents...")
|
25 |
+
loader = DirectoryLoader('data', glob="./*.txt")
|
26 |
+
documents = loader.load()
|
27 |
+
|
28 |
+
# Split documents into manageable chunks
|
29 |
+
logging.info("Splitting documents into chunks...")
|
30 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=200)
|
31 |
+
texts = text_splitter.split_documents(documents)
|
32 |
+
|
33 |
+
# Load embedding model once
|
34 |
+
logging.info("Loading embedding model...")
|
35 |
+
embeddings = HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT")
|
36 |
|
37 |
+
# Function to create and save FAISS index
|
38 |
+
def create_faiss_index():
|
39 |
+
logging.info("Creating new FAISS index from documents...")
|
40 |
+
faiss_db = FAISS.from_documents(texts, embeddings)
|
41 |
faiss_db.save_local(index_directory)
|
42 |
+
logging.info("FAISS index created and saved.")
|
43 |
return faiss_db
|
44 |
|
45 |
+
# Function to load or create FAISS index
|
46 |
+
def load_or_create_faiss_index():
|
47 |
+
if os.path.exists(index_path_faiss) and os.path.exists(index_path_pkl):
|
48 |
logging.info("Loading existing FAISS index...")
|
49 |
+
faiss_db = FAISS.load_local(index_directory, embeddings, allow_dangerous_deserialization=True)
|
50 |
logging.info("FAISS index loaded successfully.")
|
51 |
return faiss_db
|
52 |
else:
|
53 |
+
logging.info("FAISS index not found. Creating a new one...")
|
54 |
+
return create_faiss_index()
|
55 |
|
56 |
+
# Load or create the index
|
57 |
+
faiss_db = load_or_create_faiss_index()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
# Optional: If you want to use the retriever later
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
# db_retriever = faiss_db.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
61 |
|
62 |
# Shutdown Ray after the process
|
63 |
ray.shutdown()
|
|
|
64 |
logging.info("Process completed successfully.")
|