blind_vision / app.py
adil9858's picture
Update app.py
c4a3c75 verified
raw
history blame
7.74 kB
import streamlit as st
import base64
from openai import OpenAI
from PIL import Image
import io
import cv2
import numpy as np
# Configure app
st.set_page_config(
page_title="AI Vision Assistant",
page_icon="πŸ”",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for futuristic design
st.markdown("""
<style>
/* Main colors */
:root {
--primary: #6366f1;
--secondary: #10b981;
--dark: #1e293b;
--light: #f8fafc;
}
/* Main container */
.stApp {
background: linear-gradient(135deg, #0f172a 0%, #1e293b 100%);
color: var(--light);
}
/* Headers */
h1, h2, h3, h4, h5, h6 {
color: var(--light) !important;
font-family: 'Inter', sans-serif;
}
/* Sidebar */
[data-testid="stSidebar"] {
background: linear-gradient(195deg, #0f172a 0%, #1e40af 100%) !important;
}
/* Buttons */
.stButton>button {
background: var(--primary) !important;
color: white !important;
border: none;
border-radius: 8px;
padding: 10px 24px;
font-weight: 500;
transition: all 0.3s;
}
.stButton>button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(99, 102, 241, 0.3);
}
/* File uploader */
[data-testid="stFileUploader"] {
border: 2px dashed var(--primary) !important;
border-radius: 12px !important;
padding: 20px !important;
}
/* Markdown output */
.markdown-text {
background: rgba(30, 41, 59, 0.7) !important;
border-radius: 12px;
padding: 20px;
border-left: 4px solid var(--secondary);
animation: fadeIn 0.5s ease-in-out;
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(10px); }
to { opacity: 1; transform: translateY(0); }
}
/* Streamlit text input */
.stTextInput>div>div>input {
background: rgba(15, 23, 42, 0.7) !important;
color: white !important;
border: 1px solid #334155 !important;
}
</style>
""", unsafe_allow_html=True)
# App title and description
st.title("πŸ” Optimus Alpha | Live Vision Assistant")
# Initialize OpenAI client
@st.cache_resource
def get_client():
return OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key='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' # Replace with your actual key
)
# ===== Camera/Upload Selection =====
input_method = st.radio(
"Select input method:",
["Live Camera", "Upload Image"],
horizontal=True
)
# ===== Camera Section =====
captured_image = None
if input_method == "Live Camera":
st.subheader("Live Camera Feed")
run_camera = st.checkbox("Start Camera", value=False)
FRAME_WINDOW = st.empty()
if run_camera:
try:
cap = cv2.VideoCapture(1)
if not cap.isOpened():
st.error("Could not access camera. Please:")
st.markdown("""
- Check camera permissions
- Ensure no other app is using the camera
- Try reconnecting the camera
""")
run_camera = False
else:
capture_col, stop_col = st.columns(2)
with capture_col:
capture_button = st.button("πŸ“Έ Capture Image")
with stop_col:
stop_button = st.button("πŸ›‘ Stop Camera")
if stop_button:
cap.release()
st.rerun()
while run_camera:
ret, frame = cap.read()
if not ret:
st.error("Failed to capture frame")
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
FRAME_WINDOW.image(frame)
if capture_button:
captured_image = frame
cap.release()
st.rerun()
break
except Exception as e:
st.error(f"Camera error: {str(e)}")
run_camera = False
# ===== Upload Section =====
else:
st.subheader("Upload Image")
uploaded_file = st.file_uploader(
"Choose an image file",
type=["jpg", "jpeg", "png"],
label_visibility="collapsed"
)
if uploaded_file:
try:
captured_image = Image.open(uploaded_file)
st.image(captured_image, caption="Uploaded Image", width=300)
except Exception as e:
st.error(f"Error loading image: {str(e)}")
# ===== Image Analysis Section =====
if captured_image is not None:
st.subheader("AI Analysis")
# Convert to PIL Image if from OpenCV
if isinstance(captured_image, np.ndarray):
image = Image.fromarray(captured_image)
else:
image = captured_image
user_prompt = st.text_input(
"Ask about the image:",
placeholder="e.g. 'What is in this image?' or 'Explain this diagram'",
key="user_prompt"
)
if st.button("Analyze Image", type="primary"):
try:
# Convert image to base64
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
# Prepare messages
messages = [
{
"role": "system",
"content": """You are an expert vision assistant. Analyze images with:
- Clear, structured responses
- Bullet points for multiple objects
- Concise explanations
- Highlight important findings in bold"""
},
{
"role": "user",
"content": [
{
"type": "text",
"text": user_prompt if user_prompt else "Describe this image in detail"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
}
}
]
}
]
# Stream the response
response_container = st.empty()
full_response = ""
client = get_client()
stream = client.chat.completions.create(
model="openrouter/optimus-alpha",
messages=messages,
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content is not None:
full_response += chunk.choices[0].delta.content
response_container.markdown(f"""
<div class="markdown-text">
{full_response}
</div>
""", unsafe_allow_html=True)
except Exception as e:
st.error(f"Analysis error: {str(e)}")
# Sidebar
with st.sidebar:
st.image("https://via.placeholder.com/200", width=200) # Replace with your logo
st.markdown("""
*Powered by OpenRouter*
""")
st.markdown("---")
st.markdown("""
**Tips:**
- For best results, use clear, well-lit images
- Ask specific questions for detailed answers
""")
st.markdown("Made with ❀️ by Koshur AI")