File size: 8,675 Bytes
10e9b7d
 
eccf8e4
3c4371f
f854a1c
 
f2262b0
 
10e9b7d
e80aab9
3db6293
e80aab9
f854a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
f854a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
3c4371f
7e4a06b
f854a1c
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
f854a1c
31243f4
f854a1c
31243f4
3c4371f
31243f4
f854a1c
36ed51a
f854a1c
3c4371f
f854a1c
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
f854a1c
 
31243f4
f854a1c
31243f4
 
e80aab9
f854a1c
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
f854a1c
 
31243f4
 
3c4371f
31243f4
 
f854a1c
7d65c66
f854a1c
e80aab9
f854a1c
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
f854a1c
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
f854a1c
e80aab9
f854a1c
0ee0419
e514fd7
 
f854a1c
 
 
e514fd7
f854a1c
 
e514fd7
e80aab9
 
f854a1c
31243f4
9088b99
7d65c66
e80aab9
f854a1c
31243f4
 
f854a1c
31243f4
e80aab9
 
 
3c4371f
 
f854a1c
7d65c66
3c4371f
 
7d65c66
3c4371f
7d65c66
 
f854a1c
7d65c66
 
 
 
 
 
3c4371f
 
31243f4
f854a1c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import gradio as gr
import requests
import pandas as pd
import openai
from smolagents import CodeAgent
from smolagents import DuckDuckGoSearchTool


# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- SmolCodeAgent Definition with system prompt and DuckDuckGo tool ---
class SmolCodeAgent:
    SYSTEM_PROMPT = """
You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: 
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list 
of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, 
apply the above rules depending of whether the element to be put in the list is a number or a string.
"""

    def __init__(self, api_key=None, model="gpt-4o"):
        if api_key is None:
            api_key = os.getenv("OPENAI_API_KEY")
        if not api_key:
            raise RuntimeError("OPENAI_API_KEY not set in environment.")
        openai.api_key = api_key
        self.model = model

        # Add DuckDuckGoSearchTool to tools
        self.tools = [DuckDuckGoSearchTool()]
        self.agent = CodeAgent(model=self.model, tools=self.tools)

    def __call__(self, question: str) -> str:
        print(f"SmolCodeAgent received question (first 50 chars): {question[:50]}...")
        try:
            full_prompt = self.SYSTEM_PROMPT.strip() + "\n\nQuestion: " + question
            answer = self.agent.run(full_prompt)
            print(f"SmolCodeAgent answer (first 100 chars): {answer[:100]}...")
            return answer
        except Exception as e:
            error_msg = f"AGENT ERROR: {e}"
            print(error_msg)
            return error_msg

# --- Main logic to run the agent on all questions and submit ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # Instantiate your SmolCodeAgent here
    try:
        agent = SmolCodeAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent code URL: {agent_code}")

    # Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None

    # Run the agent on each question
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # Prepare submission data
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    print(f"Submitting {len(answers_payload)} answers for user '{username}'...")

    # Submit answers
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except Exception:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner with SmolCodeAgent")
    gr.Markdown(
        """
        **Instructions:**
        1. Clone this space, modify the agent logic and tools.
        2. Log in to your Hugging Face account using the button below.
        3. Click 'Run Evaluation & Submit All Answers' to run the agent on all questions and submit.
        ---
        **Note:**
        Submissions may take time while the agent processes questions.
        """
    )

    login_btn = gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    # We need to pass the login profile to the function
    run_button.click(
        fn=run_and_submit_all,
        inputs=[login_btn],
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)