File size: 8,363 Bytes
10e9b7d
 
eccf8e4
3c4371f
5907175
480c00a
 
f2262b0
40a16e0
3db6293
e80aab9
40a16e0
 
 
 
 
 
 
 
f854a1c
 
5907175
40a16e0
5907175
f854a1c
5907175
7e4a06b
f854a1c
3c4371f
7e4a06b
5907175
40a16e0
3c4371f
5907175
 
 
e80aab9
40a16e0
31243f4
40a16e0
 
 
 
 
 
 
 
31243f4
5907175
31243f4
f854a1c
40a16e0
5907175
40a16e0
5907175
40a16e0
5907175
eccf8e4
5907175
 
 
 
 
 
 
40a16e0
5907175
 
40a16e0
 
 
e80aab9
40a16e0
7d65c66
 
5907175
31243f4
 
5907175
 
40a16e0
31243f4
 
5907175
 
40a16e0
 
 
 
 
31243f4
5907175
40a16e0
 
 
 
 
31243f4
 
5907175
 
e80aab9
40a16e0
 
 
 
 
 
 
 
 
e80aab9
5907175
 
 
 
e80aab9
 
5907175
 
 
e80aab9
5907175
 
 
 
 
 
 
 
 
 
 
 
40a16e0
 
5907175
 
 
40a16e0
 
 
 
 
 
 
7d65c66
40a16e0
5907175
40a16e0
 
 
e80aab9
40a16e0
e80aab9
5907175
 
 
 
40a16e0
 
 
 
 
 
 
5907175
 
480c00a
40a16e0
31243f4
5907175
 
e80aab9
40a16e0
 
 
 
 
e80aab9
 
5907175
 
 
 
 
 
 
 
40a16e0
5907175
 
 
 
 
 
40a16e0
5907175
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import gradio as gr
import requests
import pandas as pd

from smolagents import CodeAgent, DuckDuckGoSearchTool
from smolagents.models import OpenAIServerModel

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- System prompt for the model ---
SYSTEM_PROMPT = """
You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: 
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list 
of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, 
apply the above rules depending of whether the element to be put in the list is a number or a string.
"""

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetch all questions, run the agent on them, submit answers, and display results.
    """
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # Instantiate Agent with fixed system_prompt keyword
    try:
        agent = CodeAgent(
            model=OpenAIServerModel(
                model_id="gpt-4o-mini",
                system_prompt=SYSTEM_PROMPT
            ),
            tools=[DuckDuckGoSearchTool()]
        )
        print("Agent initialized successfully.")
    except Exception as e:
        print(f"Error initializing agent: {e}")
        return f"Error initializing agent: {e}", None

    # Link to code repo on Hugging Face
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # Fetch questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except Exception as e:
        print(f"Unexpected error fetching questions: {e}")
        return f"Unexpected error fetching questions: {e}", None

    # Run agent on questions
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": submitted_answer
            })
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": f"AGENT ERROR: {e}"
            })

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # Prepare submission payload
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }
    print(f"Submitting {len(answers_payload)} answers for user '{username}'...")

    # Submit answers
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except Exception:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"Unexpected error during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Please clone this space, then modify the code to define your agent's logic, tools, packages, etc.
        2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Submission can take time depending on the number of questions and model latency.
        This space provides a basic setup and encourages you to improve it further.
        """
    )

    login_button = gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        inputs=[login_button],
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host = os.getenv("SPACE_HOST")
    space_id = os.getenv("SPACE_ID")

    if space_host:
        print(f"✅ SPACE_HOST found: {space_host}")
        print(f"   Runtime URL should be: https://{space_host}.hf.space")
    else:
        print("ℹ️ SPACE_HOST environment variable not found (running locally?).")

    if space_id:
        print(f"✅ SPACE_ID found: {space_id}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main")
    else:
        print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)