Spaces:
Sleeping
Sleeping
File size: 8,363 Bytes
10e9b7d eccf8e4 3c4371f 5907175 480c00a f2262b0 40a16e0 3db6293 e80aab9 40a16e0 f854a1c 5907175 40a16e0 5907175 f854a1c 5907175 7e4a06b f854a1c 3c4371f 7e4a06b 5907175 40a16e0 3c4371f 5907175 e80aab9 40a16e0 31243f4 40a16e0 31243f4 5907175 31243f4 f854a1c 40a16e0 5907175 40a16e0 5907175 40a16e0 5907175 eccf8e4 5907175 40a16e0 5907175 40a16e0 e80aab9 40a16e0 7d65c66 5907175 31243f4 5907175 40a16e0 31243f4 5907175 40a16e0 31243f4 5907175 40a16e0 31243f4 5907175 e80aab9 40a16e0 e80aab9 5907175 e80aab9 5907175 e80aab9 5907175 40a16e0 5907175 40a16e0 7d65c66 40a16e0 5907175 40a16e0 e80aab9 40a16e0 e80aab9 5907175 40a16e0 5907175 480c00a 40a16e0 31243f4 5907175 e80aab9 40a16e0 e80aab9 5907175 40a16e0 5907175 40a16e0 5907175 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool
from smolagents.models import OpenAIServerModel
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- System prompt for the model ---
SYSTEM_PROMPT = """
You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list
of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list,
apply the above rules depending of whether the element to be put in the list is a number or a string.
"""
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetch all questions, run the agent on them, submit answers, and display results.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# Instantiate Agent with fixed system_prompt keyword
try:
agent = CodeAgent(
model=OpenAIServerModel(
model_id="gpt-4o-mini",
system_prompt=SYSTEM_PROMPT
),
tools=[DuckDuckGoSearchTool()]
)
print("Agent initialized successfully.")
except Exception as e:
print(f"Error initializing agent: {e}")
return f"Error initializing agent: {e}", None
# Link to code repo on Hugging Face
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# Fetch questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"Unexpected error fetching questions: {e}")
return f"Unexpected error fetching questions: {e}", None
# Run agent on questions
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Prepare submission payload
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
print(f"Submitting {len(answers_payload)} answers for user '{username}'...")
# Submit answers
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except Exception:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"Unexpected error during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, tools, packages, etc.
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Submission can take time depending on the number of questions and model latency.
This space provides a basic setup and encourages you to improve it further.
"""
)
login_button = gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
inputs=[login_button],
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"✅ SPACE_HOST found: {space_host}")
print(f" Runtime URL should be: https://{space_host}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id:
print(f"✅ SPACE_ID found: {space_id}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|