File size: 7,353 Bytes
5fa4369
05b8101
10e9b7d
61c2ff2
4097d7c
6a52f23
7cfb3a2
61c2ff2
 
1381703
7cfb3a2
 
 
 
 
 
3635d36
abf0257
8fd0023
7cfb3a2
 
 
 
 
 
 
 
 
 
 
a54e373
7cfb3a2
 
 
6a52f23
7cfb3a2
 
 
 
 
61c2ff2
7cfb3a2
 
 
 
 
 
61c2ff2
7cfb3a2
 
 
6a52f23
7cfb3a2
 
 
 
 
61c2ff2
6a52f23
7cfb3a2
6a52f23
7cfb3a2
6a52f23
7cfb3a2
 
 
 
 
 
 
6a52f23
7cfb3a2
 
bc758d9
7cfb3a2
 
 
 
ef65c0f
7cfb3a2
 
 
6a52f23
 
7cfb3a2
 
 
6a52f23
7cfb3a2
 
61c2ff2
7cfb3a2
 
 
61c2ff2
7cfb3a2
 
9e16e60
7cfb3a2
 
 
 
 
 
 
 
 
9e16e60
7cfb3a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e16e60
7cfb3a2
 
 
94feb70
9e16e60
 
7cfb3a2
 
 
 
 
 
 
 
 
 
 
 
61c2ff2
7cfb3a2
9e16e60
 
 
7cfb3a2
9e16e60
 
7cfb3a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61c2ff2
6a52f23
36b55d3
c2f416b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178


import os
import gradio as gr
import requests
import pandas as pd

from smolagents import CodeAgent, DuckDuckGoSearchTool
from smolagents.models import OpenAIServerModel

# System prompt as per your instructions
SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question.
Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list 
of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""

DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

class MyAgent:
    def __init__(self):
        # Initialize model with system prompt
        self.model = OpenAIServerModel(
            model_id="gpt-4",
            system_message=SYSTEM_PROMPT
        )
        self.agent = CodeAgent(
            tools=[DuckDuckGoSearchTool()],
            model=self.model
        )

    def __call__(self, question: str) -> str:
        # Run agent on the question
        return self.agent.run(question)

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches questions, runs the agent, submits answers, returns status and results table.
    """
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = MyAgent()
    except Exception as e:
        print(f"Error initializing agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent code URL: {agent_code}")

    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping invalid item: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except Exception:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        return status_message, pd.DataFrame(results_log)
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        return status_message, pd.DataFrame(results_log)
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        return status_message, pd.DataFrame(results_log)

with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Clone this space, modify code to define your agent's logic, tools, and packages.
        2. Log in to your Hugging Face account using the button below.
        3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see your score.
        
        **Note:** Submitting can take some time.
        """
    )

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host = os.getenv("SPACE_HOST")
    space_id = os.getenv("SPACE_ID")

    if space_host:
        print(f"✅ SPACE_HOST found: {space_host}")
        print(f"   Runtime URL should be: https://{space_host}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id:
        print(f"✅ SPACE_ID found: {space_id}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?).")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)