Spaces:
Sleeping
Sleeping
File size: 7,353 Bytes
5fa4369 05b8101 10e9b7d 61c2ff2 4097d7c 6a52f23 7cfb3a2 61c2ff2 1381703 7cfb3a2 3635d36 abf0257 8fd0023 7cfb3a2 a54e373 7cfb3a2 6a52f23 7cfb3a2 61c2ff2 7cfb3a2 61c2ff2 7cfb3a2 6a52f23 7cfb3a2 61c2ff2 6a52f23 7cfb3a2 6a52f23 7cfb3a2 6a52f23 7cfb3a2 6a52f23 7cfb3a2 bc758d9 7cfb3a2 ef65c0f 7cfb3a2 6a52f23 7cfb3a2 6a52f23 7cfb3a2 61c2ff2 7cfb3a2 61c2ff2 7cfb3a2 9e16e60 7cfb3a2 9e16e60 7cfb3a2 9e16e60 7cfb3a2 94feb70 9e16e60 7cfb3a2 61c2ff2 7cfb3a2 9e16e60 7cfb3a2 9e16e60 7cfb3a2 61c2ff2 6a52f23 36b55d3 c2f416b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool
from smolagents.models import OpenAIServerModel
# System prompt as per your instructions
SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question.
Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER].
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list
of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class MyAgent:
def __init__(self):
# Initialize model with system prompt
self.model = OpenAIServerModel(
model_id="gpt-4",
system_message=SYSTEM_PROMPT
)
self.agent = CodeAgent(
tools=[DuckDuckGoSearchTool()],
model=self.model
)
def __call__(self, question: str) -> str:
# Run agent on the question
return self.agent.run(question)
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches questions, runs the agent, submits answers, returns status and results table.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = MyAgent()
except Exception as e:
print(f"Error initializing agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code URL: {agent_code}")
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping invalid item: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except Exception:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
return status_message, pd.DataFrame(results_log)
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
return status_message, pd.DataFrame(results_log)
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
return status_message, pd.DataFrame(results_log)
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Clone this space, modify code to define your agent's logic, tools, and packages.
2. Log in to your Hugging Face account using the button below.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see your score.
**Note:** Submitting can take some time.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"✅ SPACE_HOST found: {space_host}")
print(f" Runtime URL should be: https://{space_host}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id:
print(f"✅ SPACE_ID found: {space_id}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?).")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|