File size: 6,692 Bytes
5fa4369
10e9b7d
4097d7c
6a52f23
94feb70
1381703
a54e373
245c97c
80241aa
f517fc2
3635d36
a54e373
8fd0023
a942c8c
 
94feb70
a942c8c
 
 
 
79fcd3e
a54e373
 
 
 
 
 
 
 
 
39211e6
6a52f23
 
 
 
 
a54e373
 
 
6a52f23
 
 
 
 
c2f416b
6a52f23
 
 
 
a942c8c
6a52f23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc758d9
6a52f23
ef65c0f
 
6a52f23
1381703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a52f23
1381703
6a52f23
 
 
62ad750
6a52f23
 
 
 
 
 
62ad750
9e16e60
 
 
1381703
 
 
 
 
 
9e16e60
 
 
 
a54e373
9e16e60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94feb70
a54e373
9e16e60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1381703
9e16e60
 
 
 
 
 
 
a54e373
9e16e60
 
a54e373
9e16e60
 
a54e373
9e16e60
 
a54e373
9e16e60
 
 
6a52f23
36b55d3
c2f416b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

import os
import requests
import pandas as pd
import gradio as gr

from smolagents import ToolCallingAgent, OpenAIServerModel
from audio_transcriber import AudioTranscriptionTool
from image_analyzer import ImageAnalysisTool
from wikipedia_searcher import WikipediaSearcher

DEFAULT_API_URL = "https://gaia-benchmark.com/api"

class GaiaAgent:
    def __init__(self):
        tools = [
            AudioTranscriptionTool(),
            ImageAnalysisTool(),
            WikipediaSearcher()
        ]

        model_id = os.getenv("OPENAI_MODEL_ID", "gpt-3.5-turbo")
        self.agent = ToolCallingAgent(
            model=OpenAIServerModel(model_id=model_id),
            tools=tools
        )

    def __call__(self, query: str) -> str:
        result = self.agent.run(query)
        return result.get("output", "No output returned")

def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        if isinstance(username, list):
            username = username[0]
        username = username.strip()
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = GaiaAgent()
    except Exception as e:
        print(f"Error initializing agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent code URL: {agent_code}")

    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []

    for item in questions_data:
        task_id = item.get("task_id")
        if not task_id:
            continue

        question_text = item.get("question", "")

        file_url = item.get("file_url")
        local_file_path = None
        if file_url:
            try:
                ext = file_url.split(".")[-1].lower()
                if ext in ["mp3", "wav", "jpeg", "jpg", "png"]:
                    local_file_path = f"./temp_{task_id}.{ext}"
                    with requests.get(file_url, stream=True) as r:
                        r.raise_for_status()
                        with open(local_file_path, "wb") as f:
                            for chunk in r.iter_content(chunk_size=8192):
                                f.write(chunk)
                    print(f"Downloaded file for task {task_id} to {local_file_path}")
                    question_text += f"\n\nFile path: {local_file_path}"
            except Exception as e:
                print(f"Failed to download file for task {task_id}: {e}")

        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": submitted_answer
            })
        except Exception as e:
            error_msg = f"AGENT ERROR: {e}"
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": error_msg
            })

        if local_file_path:
            try:
                os.remove(local_file_path)
            except Exception:
                pass

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {
        "username": username,
        "agent_code": agent_code,
        "answers": answers_payload
    }

    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        try:
            detail = e.response.json().get("detail", e.response.text)
        except Exception:
            detail = e.response.text[:500]
        return f"Submission Failed: {detail}", pd.DataFrame(results_log)
    except requests.exceptions.Timeout:
        return "Submission Failed: The request timed out.", pd.DataFrame(results_log)
    except Exception as e:
        return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)


# Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown("""
        **Instructions:**
        1. Clone this space and define your agent and tools.
        2. Log in to your Hugging Face account using the button below.
        3. Click 'Run Evaluation & Submit All Answers' to test your agent and submit results.
    """)

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host = os.getenv("SPACE_HOST")
    space_id = os.getenv("SPACE_ID")

    if space_host:
        print(f"✅ SPACE_HOST found: {space_host}")
        print(f"   Runtime URL should be: https://{space_host}.hf.space")
    else:
        print("ℹ️  SPACE_HOST not found.")

    if space_id:
        print(f"✅ SPACE_ID found: {space_id}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id}")
    else:
        print("ℹ️  SPACE_ID not found.")

    print("-"*(60 + len(" App Starting ")) + "\n")
    demo.launch(debug=True, share=False)