Spaces:
Sleeping
Sleeping
File size: 2,638 Bytes
9571928 02840f8 5c5f32d 0b0ce33 02840f8 0a0ae08 0b0ce33 9571928 0b0ce33 9571928 0b0ce33 9571928 0b0ce33 9571928 0a0ae08 9571928 0a0ae08 9571928 8504f2c 0b0ce33 5c5f32d 0a0ae08 0b0ce33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import os
import base64
import requests
from smolagents import Tool
class ImageAnalysisTool(Tool):
name = "image_analysis"
description = "Analyze the content of an image and answer a specific question about it using Hugging Face Inference API."
inputs = {
"image_path": {
"type": "string",
"description": "Path to the image file (jpg, png, etc.)"
},
"question": {
"type": "string",
"description": "A question about the image content"
}
}
output_type = "string"
def __init__(self):
super().__init__()
api_token = os.getenv("HF_API_TOKEN")
if not api_token:
raise EnvironmentError("HF_API_TOKEN not found in environment variables.")
self.api_url = "https://api-inference.huggingface.co/models/microsoft/git-base-captioning"
self.headers = {
"Authorization": f"Bearer {api_token}",
"Content-Type": "application/json"
}
def forward(self, image_path: str, question: str) -> str:
try:
with open(image_path, "rb") as img_file:
image_bytes = img_file.read()
# Encode image to base64 string
img_b64 = base64.b64encode(image_bytes).decode("utf-8")
# Prepare payload for the API
payload = {
"inputs": img_b64
}
response = requests.post(
self.api_url,
headers=self.headers,
json=payload,
timeout=60
)
if response.status_code == 200:
result = response.json()
caption = None
# Try common keys for caption output
if isinstance(result, dict):
caption = result.get("generated_text") or result.get("caption") or result.get("text")
elif isinstance(result, list) and len(result) > 0 and isinstance(result[0], dict):
caption = result[0].get("generated_text") or result[0].get("caption") or result[0].get("text")
if not caption:
return "Error: No caption found in model response."
# Combine caption with the question to form a simple answer
answer = f"Caption: {caption}\nAnswer to question '{question}': {caption}"
return answer.strip()
else:
return f"Error analyzing image: {response.status_code} {response.text}"
except Exception as e:
return f"Error analyzing image: {e}"
|