File size: 6,701 Bytes
5fa4369
10e9b7d
c64bf2e
4097d7c
6a52f23
53194ec
c2f416b
53194ec
245c97c
80241aa
ce74e50
03f0224
c2f416b
 
5fa4369
c2f416b
ce74e50
03f0224
 
dc7f623
03f0224
 
 
ce74e50
03f0224
dc7f623
 
 
 
 
ce74e50
 
c2f416b
ce74e50
 
dc7f623
 
 
 
 
 
 
6db476e
dc7f623
d07e368
dc7f623
c2f416b
 
 
dc7f623
 
6a52f23
9674f46
 
c2f416b
6a52f23
 
 
 
 
 
 
 
 
 
c2f416b
6a52f23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce74e50
6a52f23
 
 
 
 
 
 
 
 
c64bf2e
6a52f23
 
 
 
 
 
 
 
 
 
31243f4
6a52f23
e80aab9
c2f416b
6a52f23
 
 
 
c2f416b
6a52f23
c2f416b
6a52f23
 
 
 
 
 
 
 
 
 
e80aab9
c2f416b
6a52f23
 
 
 
 
 
 
c2f416b
6a52f23
 
 
 
 
c2f416b
6a52f23
c2f416b
6a52f23
 
36b55d3
c2f416b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

import os
import gradio as gr
import requests
import pandas as pd

from smolagents import Tool, CodeAgent, HfApiModel

from audio_transcriber import AudioTranscriptionTool
from image_analyzer import ImageAnalysisTool
from wikipedia_searcher import WikipediaSearcher

# GAIA scoring endpoint
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# Static system prompt for GAIA
SYSTEM_PROMPT = """You are an agent solving the GAIA benchmark and you are required to provide exact answers.
Rules to follow:
1. Return only the exact requested answer: no explanation and no reasoning.
2. For yes/no questions, return exactly \"Yes\" or \"No\".
3. For dates, use the exact format requested.
4. For numbers, use the exact number, no other format.
5. For names, use the exact name as found in sources.
6. If the question has an associated file, process it accordingly.
Examples of good responses:
- \"42\"
- \"Yes\"
- \"October 5, 2001\"
- \"Buenos Aires\"
Never include phrases like \"the answer is...\" or \"Based on my research\".
Only return the exact answer."""

# Define agent tools
audio_tool = AudioTranscriptionTool()
image_tool = ImageAnalysisTool()
wikipedia_tool = Tool.from_function(
    name="wikipedia_search",
    description="Search for facts using Wikipedia.",
    input_schema={"query": {"type": "string", "description": "Search query"}},
    output_type="string",
    forward=lambda query: WikipediaSearcher().search(query)
)

tools = [audio_tool, image_tool, wikipedia_tool]

# Define the custom agent using Dolphin model (free Mixtral)
class MyAgent(CodeAgent):
    def __init__(self):
        model = HfApiModel(
            model="cognitivecomputations/dolphin-2.6-mixtral-8x7b",
            api_key=os.getenv("HF_API_TOKEN", "").strip()
        )
        super().__init__(model=model, tools=tools)

# Evaluation + Submission function
def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = profile.username
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = MyAgent()
    except Exception as e:
        print(f"Error initializing agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent code URL: {agent_code}")

    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        if not task_id:
            continue
        try:
            submitted_answer = agent(item)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id,
                "Question": item.get("question", ""),
                "Submitted Answer": submitted_answer
            })
        except Exception as e:
            error_msg = f"AGENT ERROR: {e}"
            results_log.append({
                "Task ID": task_id,
                "Question": item.get("question", ""),
                "Submitted Answer": error_msg
            })

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }

    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        try:
            detail = e.response.json().get("detail", e.response.text)
        except Exception:
            detail = e.response.text[:500]
        return f"Submission Failed: {detail}", pd.DataFrame(results_log)
    except requests.exceptions.Timeout:
        return "Submission Failed: The request timed out.", pd.DataFrame(results_log)
    except Exception as e:
        return f"An unexpected error occurred during submission: {e}", pd.DataFrame(results_log)

# Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown("""
        **Instructions:**
        1. Clone this space and define your agent and tools.
        2. Log in to your Hugging Face account using the button below.
        3. Click 'Run Evaluation & Submit All Answers' to test your agent and submit results.
    """)

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host = os.getenv("SPACE_HOST")
    space_id = os.getenv("SPACE_ID")

    if space_host:
        print(f"✅ SPACE_HOST found: {space_host}")
        print(f"   Runtime URL should be: https://{space_host}.hf.space")
    else:
        print("ℹ️  SPACE_HOST not found.")

    if space_id:
        print(f"✅ SPACE_ID found: {space_id}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id}")
    else:
        print("ℹ️  SPACE_ID not found.")

    print("-"*(60 + len(" App Starting ")) + "\n")
    demo.launch(debug=True, share=False)