Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
import os | |
import re | |
import time | |
import json | |
import cv2 | |
import requests | |
import hashlib | |
import inspect | |
import functools | |
from math import sqrt | |
from time import sleep | |
from collections import Counter | |
from typing import Optional, List, Dict, Callable | |
import pandas as pd | |
import gradio as gr | |
import dateparser | |
import dataclasses | |
from langchain_core.language_models import LLM | |
from langchain_core.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
from langchain_core.documents import Document | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
from smolagents import CodeAgent, tool, InferenceClientModel | |
class GeminiLLM(LLM): | |
"""Wrapper para usar Google Gemini como un LLM de LangChain.""" | |
api_key: str = os.getenv("GEMINI") | |
fallback_api_key: str = os.getenv("GEMINI2") | |
model_name: str = "gemini-2.0-flash" | |
temperature: float = 0.1 | |
def _llm_type(self) -> str: | |
return "google-gemini-llm" | |
def _make_request(self, api_key: str, prompt: str) -> requests.Response: | |
url = f"https://generativelanguage.googleapis.com/v1beta/models/{self.model_name}:generateContent" | |
headers = { | |
"Content-Type": "application/json", | |
"X-goog-api-key": api_key | |
} | |
full_prompt = ( | |
"You are a helpful agent that answers questions concisely and accurate and strictly follows instructions.\n" | |
"Respond ONLY with the requested information, no explanations or extra words. If the question specifies a format (number, name, comma separated list), follow it exactly.\n" | |
f"Question: {prompt}" | |
) | |
data = { | |
"contents": [ | |
{ | |
"role": "user", | |
"parts": [ | |
{"text": full_prompt} | |
] | |
} | |
], | |
"generationConfig": { | |
"temperature": self.temperature | |
} | |
} | |
return requests.post(url, headers=headers, json=data) | |
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str: | |
"""Envía el prompt a la API de Gemini y devuelve la respuesta. | |
Si la cuota se supera, intenta con la API key alternativa.""" | |
if not self.api_key: | |
raise ValueError("Debes proporcionar una API Key válida de Gemini.") | |
response = self._make_request(self.api_key, prompt) | |
# Si el error es por cuota y hay fallback API key definida, intentar con la fallback | |
if response.status_code == 403 and "quota" in response.text.lower(): | |
if self.fallback_api_key: | |
time.sleep(3) # Simula latencia opcional | |
response = self._make_request(self.fallback_api_key, prompt) | |
else: | |
return f"Error {response.status_code}: {response.text} (no hay API key alternativa)" | |
if response.status_code == 200: | |
result = response.json() | |
return result["candidates"][0]["content"]["parts"][0]["text"] | |
else: | |
return f"Error {response.status_code}: {response.text}" | |
gemini_llm = GeminiLLM() | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
class WikiSourceDocument: | |
source: str | |
page: str | |
page_content: str | |
# --- Search Tools --- | |
def wiki_search(query: str, load_max_docs: int = 3) -> List[WikiSourceDocument]: | |
""" | |
Search Wikipedia and return a list of documents. | |
Args: | |
query (str): The search query to look up on Wikipedia. | |
load_max_docs (int): The maximum number of documents to retrieve. | |
Returns: | |
List[WikiSourceDocument]: A list of documents containing source, page, and content. | |
""" | |
search_docs = WikipediaLoader(query=query, load_max_docs=load_max_docs).load() | |
return search_docs | |
def web_search(query: str, max_results: int = 3) -> Dict[str, str]: | |
""" | |
Perform a web search and return summarized results. | |
Args: | |
query (str): The search query to look up on the web. | |
max_results (int): The maximum number of search results to retrieve. | |
Returns: | |
Dict[str, str]: A dictionary containing the web search results. | |
""" | |
search_docs = TavilySearchResults(max_results=max_results).invoke(input=query) | |
return {"web_results": search_docs} | |
def arxiv_search(query: str, load_max_docs: int = 3) -> Dict[str, str]: | |
""" | |
Search Arxiv and return formatted research documents. | |
Args: | |
query (str): The search query for scientific papers. | |
load_max_docs (int): The maximum number of documents to retrieve. | |
Returns: | |
Dict[str, str]: A dictionary containing formatted Arxiv search results. | |
""" | |
search_docs = ArxivLoader(query=query, load_max_docs=load_max_docs).load() | |
formatted_search_docs = "\n\n---\n\n".join( | |
[ | |
f'<Document Title="{doc.metadata["Title"]}" Published="{doc.metadata["Published"]}" ' | |
f'Authors="{doc.metadata["Authors"]}" Summary="{doc.metadata["Summary"]}"/>\n' | |
f'{doc.page_content}\n</Document>' | |
for doc in search_docs | |
] | |
) | |
return {"arxiv_results": formatted_search_docs} | |
def extract_keywords(text: str) -> list: | |
""" | |
Simple keyword extractor that splits text into unique keywords. | |
Args: | |
text (str): Input text. | |
Returns: | |
list: List of extracted keywords. | |
""" | |
words = text.lower().split() | |
keywords = list(set([w.strip(".,!?") for w in words if len(w) > 3])) | |
return keywords | |
import re | |
def calculate_expression(expression: str) -> str: | |
""" | |
Evaluates a simple mathematical expression and returns the result. | |
Args: | |
expression (str): A math expression (e.g., "12 * (3+5) / 4"). | |
Returns: | |
str: The result of the calculation or an error message if invalid. | |
""" | |
try: | |
# Allow only numbers, operators, parentheses, decimal points, and spaces | |
if not re.match(r'^[\d\s\+\-\*\/\(\)\.]+$', expression): | |
return "Invalid characters detected in expression." | |
result = eval(expression) | |
return str(result) | |
except Exception as e: | |
return f"Error evaluating expression: {str(e)}" | |
def basic_calculator(a: float, b: float, operation: str) -> str: | |
""" | |
Perform basic arithmetic operations between two numbers. | |
Args: | |
a (float): First number. | |
b (float): Second number. | |
operation (str): The operation to perform. Options: "add", "subtract", "multiply", "divide". | |
Returns: | |
str: The result of the calculation or an error message. | |
""" | |
try: | |
if operation == "add": | |
return str(a + b) | |
elif operation == "subtract": | |
return str(a - b) | |
elif operation == "multiply": | |
return str(a * b) | |
elif operation == "divide": | |
if b == 0: | |
return "Error: Division by zero is not allowed." | |
return str(a / b) | |
else: | |
return "Invalid operation. Use add, subtract, multiply, or divide." | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def sort_list(items: list, reverse: bool = False): | |
""" | |
Sort a list of numbers or strings in ascending or descending order. | |
Returns a stringified list to avoid NoneType errors in the agent. | |
""" | |
try: | |
if not isinstance(items, list): | |
return "Error: Input must be a list." | |
return str(sorted(items, reverse=reverse)) | |
except Exception as e: | |
return f"Error sorting list: {str(e)}" | |
# --- Agente básico optimizado para preguntas --- | |
class BasicAgent: | |
def __init__(self, llm=None, max_iterations=3): | |
self.llm = llm or GeminiLLM() | |
# Sólo herramientas de búsqueda y extracción textual clave | |
self.tools = { | |
"wiki_search": wiki_search, | |
"web_search": web_search, | |
"arxiv_search": arxiv_search, | |
"extract_keywords": extract_keywords, | |
"calculate_expression":calculate_expression, | |
"basic_calculator":basic_calculator, | |
"sort_list":sort_list | |
} | |
self._cache = {} | |
self.max_iterations = max_iterations | |
# Descripción simplificada de herramientas para el prompt | |
tools_desc = "\n".join( | |
f"- {name}: {(func.__doc__ or 'No description available').strip().splitlines()[0]}" | |
for name, func in self.tools.items() | |
) | |
self.prompt_template = PromptTemplate.from_template(tools_desc) | |
self.chain = LLMChain(prompt=self.prompt_template, llm=self.llm) | |
def _cache_key(self, tool_name, args, kwargs): | |
key_data = {"tool": tool_name, "args": args, "kwargs": kwargs} | |
key_json = json.dumps(key_data, sort_keys=True, default=str) | |
return hashlib.md5(key_json.encode()).hexdigest() | |
def call_tool(self, tool_name: str, *args, **kwargs): | |
func = self.tools.get(tool_name) | |
if not func: | |
return f"Tool '{tool_name}' not found." | |
key = self._cache_key(tool_name, args, kwargs) | |
if key in self._cache: | |
return self._cache[key] | |
try: | |
result = func(*args, **kwargs) | |
self._cache[key] = result | |
return result | |
except Exception as e: | |
return f"Error executing tool '{tool_name}': {e}" | |
def _parse_arg(self, arg: str): | |
arg = arg.strip() | |
if arg.lower() in ("true", "false"): | |
return arg.lower() == "true" | |
try: | |
return int(arg) | |
except: | |
pass | |
try: | |
return float(arg) | |
except: | |
pass | |
if (arg.startswith('"') and arg.endswith('"')) or (arg.startswith("'") and arg.endswith("'")): | |
return arg[1:-1] | |
try: | |
return json.loads(arg) | |
except: | |
pass | |
return arg | |
def _run_once(self, text: str) -> (str, bool): | |
llm_out = self.chain.run({"question": text}) | |
pattern = r"tool:(\w+)\((.*?)\)" | |
tools_called = False | |
def repl(m): | |
nonlocal tools_called | |
tools_called = True | |
tool_name = m.group(1) | |
args_raw = m.group(2) | |
args = [self._parse_arg(a) for a in re.findall(r'(?:[^,"]|"(?:\\.|[^"])*")+', args_raw)] if args_raw.strip() else [] | |
res = self.call_tool(tool_name, *args) | |
return str(res) | |
processed = re.sub(pattern, repl, llm_out) | |
return processed, tools_called | |
def __call__(self, question: str) -> str: | |
text = question | |
for _ in range(self.max_iterations): | |
text, used_tools = self._run_once(text) | |
if not used_tools: | |
break | |
return text | |
# --- Build Gradio Interface using Blocks --- | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-" * 30 + " App Starting " + "-" * 30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-" * (60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |