File size: 19,167 Bytes
bd53a97
 
55a686c
7a97fe6
023a20f
7a97fe6
023a20f
40e41ce
023a20f
40e41ce
023a20f
 
 
 
 
 
40e41ce
023a20f
 
ca08b2a
023a20f
 
 
 
40e41ce
023a20f
 
 
 
40e41ce
023a20f
f290df8
bd53a97
 
 
6f2ca22
8870372
bd53a97
20edd6d
bd53a97
 
 
 
8870372
f290df8
a7409b4
 
 
 
 
8870372
a7409b4
c899c25
3fd0e63
a7409b4
 
3fd0e63
a7409b4
 
 
 
 
 
 
 
 
 
 
bd53a97
 
8870372
a7409b4
1a34642
f290df8
d658dbd
f290df8
 
 
 
 
 
 
 
bd53a97
f290df8
 
 
93ddda8
 
f290df8
 
 
20edd6d
bd53a97
 
 
 
 
 
 
 
 
e81ceaa
40e41ce
e81ceaa
 
 
 
 
 
 
 
 
 
13de448
e81ceaa
40e41ce
13de448
 
 
 
 
 
 
 
 
 
bd53a97
 
e81ceaa
 
40e41ce
13de448
 
 
 
 
 
 
 
 
 
e81ceaa
 
 
 
40e41ce
13de448
 
 
 
 
 
 
 
 
 
e81ceaa
 
 
40e41ce
 
 
e81ceaa
 
 
 
 
839404d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13de448
1f13cec
839404d
 
1f13cec
839404d
 
1f13cec
 
 
839404d
1f13cec
13de448
 
 
40e41ce
e81ceaa
40e41ce
8870372
40e41ce
8870372
5cb0f8d
 
 
 
839404d
 
 
 
 
5cb0f8d
8870372
7a97fe6
 
40e41ce
3e23945
 
 
7a97fe6
3e23945
dbf44cf
7a97fe6
8870372
 
 
 
 
 
 
 
40e41ce
 
 
8870372
 
 
40e41ce
8870372
 
 
 
 
40e41ce
8870372
7a97fe6
 
40e41ce
 
7a97fe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8870372
7a97fe6
8870372
7a97fe6
 
 
 
 
 
 
 
8870372
7a97fe6
 
8870372
7a97fe6
 
40e41ce
7a97fe6
 
 
 
e81ceaa
 
40e41ce
 
 
 
 
e81ceaa
f8c9171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e81ceaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd53a97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# -*- coding: utf-8 -*-

import os
import re
import time
import json
import cv2
import requests
import hashlib
import inspect
import functools
from math import sqrt
from time import sleep
from collections import Counter
from typing import Optional, List, Dict, Callable

import pandas as pd
import gradio as gr
import dateparser
import dataclasses

from langchain_core.language_models import LLM
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain_core.documents import Document

from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader

from smolagents import CodeAgent, tool, InferenceClientModel


class GeminiLLM(LLM):
    """Wrapper para usar Google Gemini como un LLM de LangChain."""

    api_key: str = os.getenv("GEMINI")
    fallback_api_key: str = os.getenv("GEMINI2")
    model_name: str = "gemini-2.0-flash"
    temperature: float = 0.1

    @property
    def _llm_type(self) -> str:
        return "google-gemini-llm"

    def _make_request(self, api_key: str, prompt: str) -> requests.Response:
        url = f"https://generativelanguage.googleapis.com/v1beta/models/{self.model_name}:generateContent"
        headers = {
            "Content-Type": "application/json",
            "X-goog-api-key": api_key
        }

        full_prompt = (
            "You are a helpful agent that answers questions concisely and accurate and strictly follows instructions.\n"
            "Respond ONLY with the requested information, no explanations or extra words. If the question specifies a format (number, name, comma separated list), follow it exactly.\n"
            f"Question: {prompt}"
        )

        data = {
            "contents": [
                {
                    "role": "user",
                    "parts": [
                        {"text": full_prompt}
                    ]
                }
            ],
            "generationConfig": {
                "temperature": self.temperature
            }
        }

        return requests.post(url, headers=headers, json=data)



    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        """Envía el prompt a la API de Gemini y devuelve la respuesta.
           Si la cuota se supera, intenta con la API key alternativa."""

        if not self.api_key:
            raise ValueError("Debes proporcionar una API Key válida de Gemini.")

        response = self._make_request(self.api_key, prompt)

        # Si el error es por cuota y hay fallback API key definida, intentar con la fallback
        if response.status_code == 403 and "quota" in response.text.lower():
            if self.fallback_api_key:
                time.sleep(3)  # Simula latencia opcional

                response = self._make_request(self.fallback_api_key, prompt)
            else:
                return f"Error {response.status_code}: {response.text} (no hay API key alternativa)"

        if response.status_code == 200:
            result = response.json()
            return result["candidates"][0]["content"]["parts"][0]["text"]
        else:
            return f"Error {response.status_code}: {response.text}"





gemini_llm = GeminiLLM()
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

@dataclasses.dataclass
class WikiSourceDocument:
    source: str
    page: str
    page_content: str

# --- Search Tools ---
@tool
def wiki_search(query: str, load_max_docs: int = 3) -> List[WikiSourceDocument]:
    """
    Search Wikipedia and return a list of documents.

    Args:
        query (str): The search query to look up on Wikipedia.
        load_max_docs (int): The maximum number of documents to retrieve.

    Returns:
        List[WikiSourceDocument]: A list of documents containing source, page, and content.
    """
    search_docs = WikipediaLoader(query=query, load_max_docs=load_max_docs).load()
    return search_docs

@tool
def web_search(query: str, max_results: int = 3) -> Dict[str, str]:
    """
    Perform a web search and return summarized results.

    Args:
        query (str): The search query to look up on the web.
        max_results (int): The maximum number of search results to retrieve.

    Returns:
        Dict[str, str]: A dictionary containing the web search results.
    """
    search_docs = TavilySearchResults(max_results=max_results).invoke(input=query)
    return {"web_results": search_docs}

@tool
def arxiv_search(query: str, load_max_docs: int = 3) -> Dict[str, str]:
    """
    Search Arxiv and return formatted research documents.

    Args:
        query (str): The search query for scientific papers.
        load_max_docs (int): The maximum number of documents to retrieve.

    Returns:
        Dict[str, str]: A dictionary containing formatted Arxiv search results.
    """
    search_docs = ArxivLoader(query=query, load_max_docs=load_max_docs).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document Title="{doc.metadata["Title"]}" Published="{doc.metadata["Published"]}" '
            f'Authors="{doc.metadata["Authors"]}" Summary="{doc.metadata["Summary"]}"/>\n'
            f'{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"arxiv_results": formatted_search_docs}

def extract_keywords(text: str) -> list:
    """
    Simple keyword extractor that splits text into unique keywords.
    
    Args:
        text (str): Input text.

    Returns:
        list: List of extracted keywords.
    """
    words = text.lower().split()
    keywords = list(set([w.strip(".,!?") for w in words if len(w) > 3]))
    return keywords

import re

def calculate_expression(expression: str) -> str:
    """
    Evaluates a simple mathematical expression and returns the result.

    Args:
        expression (str): A math expression (e.g., "12 * (3+5) / 4").

    Returns:
        str: The result of the calculation or an error message if invalid.
    """
    try:
        # Allow only numbers, operators, parentheses, decimal points, and spaces
        if not re.match(r'^[\d\s\+\-\*\/\(\)\.]+$', expression):
            return "Invalid characters detected in expression."
        
        result = eval(expression)
        return str(result)
    except Exception as e:
        return f"Error evaluating expression: {str(e)}"

def basic_calculator(a: float, b: float, operation: str) -> str:
    """
    Perform basic arithmetic operations between two numbers.

    Args:
        a (float): First number.
        b (float): Second number.
        operation (str): The operation to perform. Options: "add", "subtract", "multiply", "divide".

    Returns:
        str: The result of the calculation or an error message.
    """
    try:
        if operation == "add":
            return str(a + b)
        elif operation == "subtract":
            return str(a - b)
        elif operation == "multiply":
            return str(a * b)
        elif operation == "divide":
            if b == 0:
                return "Error: Division by zero is not allowed."
            return str(a / b)
        else:
            return "Invalid operation. Use add, subtract, multiply, or divide."
    except Exception as e:
        return f"Error: {str(e)}"

def sort_list(items: list, reverse: bool = False):
    """
    Sort a list of numbers or strings in ascending or descending order.
    Returns a stringified list to avoid NoneType errors in the agent.
    """
    try:
        if not isinstance(items, list):
            return "Error: Input must be a list."
        return str(sorted(items, reverse=reverse))
    except Exception as e:
        return f"Error sorting list: {str(e)}"



# --- Agente básico optimizado para preguntas ---
class BasicAgent:
    def __init__(self, llm=None, max_iterations=3):
        self.llm = llm or GeminiLLM()
        # Sólo herramientas de búsqueda y extracción textual clave
        self.tools = {
            "wiki_search": wiki_search,
            "web_search": web_search,
            "arxiv_search": arxiv_search,
            "extract_keywords": extract_keywords,
            "calculate_expression":calculate_expression,
            "basic_calculator":basic_calculator,
            "sort_list":sort_list

          
        }
        self._cache = {}
        self.max_iterations = max_iterations

        # Descripción simplificada de herramientas para el prompt
        tools_desc = "\n".join(
            f"- {name}: {(func.__doc__ or 'No description available').strip().splitlines()[0]}"
            for name, func in self.tools.items()
        )

        self.prompt_template = PromptTemplate.from_template(tools_desc)
        self.chain = LLMChain(prompt=self.prompt_template, llm=self.llm)

    def _cache_key(self, tool_name, args, kwargs):
        key_data = {"tool": tool_name, "args": args, "kwargs": kwargs}
        key_json = json.dumps(key_data, sort_keys=True, default=str)
        return hashlib.md5(key_json.encode()).hexdigest()

    def call_tool(self, tool_name: str, *args, **kwargs):
        func = self.tools.get(tool_name)
        if not func:
            return f"Tool '{tool_name}' not found."

        key = self._cache_key(tool_name, args, kwargs)
        if key in self._cache:
            return self._cache[key]

        try:
            result = func(*args, **kwargs)
            self._cache[key] = result
            return result
        except Exception as e:
            return f"Error executing tool '{tool_name}': {e}"

    def _parse_arg(self, arg: str):
        arg = arg.strip()
        if arg.lower() in ("true", "false"):
            return arg.lower() == "true"
        try:
            return int(arg)
        except:
            pass
        try:
            return float(arg)
        except:
            pass
        if (arg.startswith('"') and arg.endswith('"')) or (arg.startswith("'") and arg.endswith("'")):
            return arg[1:-1]
        try:
            return json.loads(arg)
        except:
            pass
        return arg

    def _run_once(self, text: str) -> (str, bool):
        llm_out = self.chain.run({"question": text})
        pattern = r"tool:(\w+)\((.*?)\)"
        tools_called = False

        def repl(m):
            nonlocal tools_called
            tools_called = True
            tool_name = m.group(1)
            args_raw = m.group(2)
            args = [self._parse_arg(a) for a in re.findall(r'(?:[^,"]|"(?:\\.|[^"])*")+', args_raw)] if args_raw.strip() else []
            res = self.call_tool(tool_name, *args)
            return str(res)

        processed = re.sub(pattern, repl, llm_out)
        return processed, tools_called

    def __call__(self, question: str) -> str:
        text = question
        for _ in range(self.max_iterations):
            text, used_tools = self._run_once(text)
            if not used_tools:
                break
        return text







# --- Build Gradio Interface using Blocks ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")  # Get the SPACE_ID for sending link to the code

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-" * 30 + " App Starting " + "-" * 30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")  # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:  # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-" * (60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)