|
"""LangGraph Agent using Mistral""" |
|
import os |
|
from dotenv import load_dotenv |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition |
|
from langgraph.prebuilt import ToolNode |
|
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.vectorstores import SupabaseVectorStore |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
from transformers import pipeline |
|
from langchain.embeddings.huggingface import HuggingFaceEmbeddings |
|
from supabase.client import Client, create_client |
|
|
|
load_dotenv() |
|
|
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> float: |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
return a % b |
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
return "\n\n---\n\n".join([doc.page_content for doc in search_docs]) |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query) |
|
return "\n\n---\n\n".join([doc.page_content for doc in search_docs]) |
|
|
|
@tool |
|
def arvix_search(query: str) -> str: |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in search_docs]) |
|
|
|
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search] |
|
|
|
|
|
with open("system_prompt.txt", "r", encoding="utf-8") as f: |
|
system_prompt = f.read() |
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
supabase: Client = create_client( |
|
os.environ.get("SUPABASE_URL"), |
|
os.environ.get("SUPABASE_SERVICE_KEY") |
|
) |
|
vector_store = SupabaseVectorStore( |
|
client=supabase, |
|
embedding=embeddings, |
|
table_name="documents", |
|
query_name="match_documents_langchain" |
|
) |
|
|
|
|
|
class MistralAgent: |
|
def __init__(self): |
|
self.generator = pipeline("text-generation", model="mistralai/Mistral-7B-v0.1", device=0) |
|
print("Mistral model loaded.") |
|
|
|
def invoke(self, messages): |
|
question = messages[-1].content |
|
result = self.generator(question, max_length=300, do_sample=True)[0]["generated_text"] |
|
return HumanMessage(content=result.strip()) |
|
|
|
mistral_agent = MistralAgent() |
|
|
|
|
|
def build_graph(): |
|
def assistant(state: MessagesState): |
|
return {"messages": [mistral_agent.invoke(state["messages"])]} |
|
|
|
def retriever(state: MessagesState): |
|
similar = vector_store.similarity_search(state["messages"][-1].content) |
|
example = HumanMessage(content=f"Similar Q&A:\n\n{similar[0].page_content}") |
|
return {"messages": [sys_msg] + state["messages"] + [example]} |
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("retriever", retriever) |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
builder.add_edge(START, "retriever") |
|
builder.add_edge("retriever", "assistant") |
|
builder.add_conditional_edges("assistant", tools_condition) |
|
builder.add_edge("tools", "assistant") |
|
|
|
return builder.compile() |
|
|
|
|
|
def run_agent(question: str) -> str: |
|
graph = build_graph() |
|
messages = [HumanMessage(content=question)] |
|
result = graph.invoke({"messages": messages}) |
|
return result["messages"][-1].content.strip() |
|
|
|
if __name__ == "__main__": |
|
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" |
|
answer = run_agent(question) |
|
print("ANSWER:", answer) |
|
|