Upload 2 files
#50
by
yooke
- opened
- agent.py +112 -0
- system_prompt.txt +1 -0
agent.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
4 |
+
from langgraph.prebuilt import tools_condition
|
5 |
+
from langgraph.prebuilt import ToolNode
|
6 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
7 |
+
from langchain_community.document_loaders import WikipediaLoader
|
8 |
+
from langchain_community.document_loaders import ArxivLoader
|
9 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
10 |
+
from langchain_core.tools import tool
|
11 |
+
# from langchain_openai import ChatOpenAI
|
12 |
+
from langchain_deepseek import ChatDeepSeek
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
load_dotenv()
|
17 |
+
DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_API_KEY")
|
18 |
+
@tool
|
19 |
+
def multiply(a: int, b: int) -> int:
|
20 |
+
"""Multiplies two numbers."""
|
21 |
+
return a * b
|
22 |
+
@tool
|
23 |
+
def add (a: int, b: int) -> int:
|
24 |
+
"""Adds two numbers."""
|
25 |
+
return a + b
|
26 |
+
@tool
|
27 |
+
def subtract (a: int, b: int) -> int:
|
28 |
+
"""Subtracts two numbers."""
|
29 |
+
return a - b
|
30 |
+
@tool
|
31 |
+
def divide (a: int, b: int) -> int:
|
32 |
+
"""Divides two numbers."""
|
33 |
+
return a / b
|
34 |
+
@tool
|
35 |
+
def modulo (a: int, b: int) -> int:
|
36 |
+
"""Returns the remainder of two numbers."""
|
37 |
+
return a % b
|
38 |
+
@tool
|
39 |
+
def wiki_search(query:str)->str:
|
40 |
+
"Using Wikipedia, search for a query and return the first result."
|
41 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
42 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
43 |
+
[
|
44 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
45 |
+
for doc in search_docs
|
46 |
+
])
|
47 |
+
return {"wiki_results": formatted_search_docs}
|
48 |
+
@tool
|
49 |
+
def arvix_search(query: str) -> str:
|
50 |
+
"""Search Arxiv for a query and return maximum 3 result.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
query: The search query."""
|
54 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
55 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
56 |
+
[
|
57 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
58 |
+
for doc in search_docs
|
59 |
+
])
|
60 |
+
return {"arvix_results": formatted_search_docs}
|
61 |
+
|
62 |
+
|
63 |
+
# load the system prompt from the file
|
64 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
65 |
+
system_prompt = f.read()
|
66 |
+
sys_msg = SystemMessage(content=system_prompt)
|
67 |
+
|
68 |
+
tools = [
|
69 |
+
multiply,
|
70 |
+
add,
|
71 |
+
subtract,
|
72 |
+
divide,
|
73 |
+
modulo,
|
74 |
+
wiki_search,
|
75 |
+
arvix_search,
|
76 |
+
]
|
77 |
+
def build_graph():
|
78 |
+
llm = ChatDeepSeek(
|
79 |
+
model="deepseek-chat",
|
80 |
+
temperature=0,
|
81 |
+
max_tokens=None,
|
82 |
+
timeout=None,
|
83 |
+
max_retries=2,
|
84 |
+
api_key=DEEPSEEK_API_KEY,
|
85 |
+
)
|
86 |
+
llm_with_tools = llm.bind_tools(tools)
|
87 |
+
def assistant(state: MessagesState):
|
88 |
+
"""Assistant node"""
|
89 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
90 |
+
|
91 |
+
builder = StateGraph(MessagesState)
|
92 |
+
builder.add_node("assistant", assistant)
|
93 |
+
builder.add_node("tools",ToolNode(tools))
|
94 |
+
builder.add_edge(START, "assistant")
|
95 |
+
builder.add_conditional_edges(
|
96 |
+
"assistant",
|
97 |
+
tools_condition,
|
98 |
+
)
|
99 |
+
builder.add_edge("tools", "assistant")
|
100 |
+
return builder.compile()
|
101 |
+
if __name__ == "__main__":
|
102 |
+
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
103 |
+
# Build the graph
|
104 |
+
graph = build_graph()
|
105 |
+
png_data = graph.get_graph().draw_mermaid_png()
|
106 |
+
with open("graph.png", "wb") as f:
|
107 |
+
f.write(png_data)
|
108 |
+
# Run the graph
|
109 |
+
messages = [HumanMessage(content=question)]
|
110 |
+
messages = graph.invoke({"messages": messages})
|
111 |
+
for m in messages["messages"]:
|
112 |
+
m.pretty_print()
|
system_prompt.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
You are a helpful AI assistant that can use various tools to answer questions. You have access to mathematical operations, Wikipedia search, and Arxiv search. Always try to provide accurate and helpful information.
|