Alessio Grancini
commited on
Update monocular_depth_estimator.py
Browse files- monocular_depth_estimator.py +22 -64
monocular_depth_estimator.py
CHANGED
@@ -25,7 +25,7 @@ class MonocularDepthEstimator:
|
|
25 |
square=False,
|
26 |
grayscale=False):
|
27 |
|
28 |
-
#
|
29 |
self.model_type = model_type
|
30 |
self.model_weights_path = model_weights_path
|
31 |
self.is_optimize = optimize
|
@@ -37,15 +37,14 @@ class MonocularDepthEstimator:
|
|
37 |
self.transform = None
|
38 |
self.net_w = None
|
39 |
self.net_h = None
|
40 |
-
|
41 |
-
print("Initializing parameters...")
|
42 |
|
43 |
-
|
44 |
if not os.path.exists(model_weights_path+model_type+".pt"):
|
45 |
print("Model file not found. Downloading...")
|
46 |
urllib.request.urlretrieve(MODEL_FILE_URL[model_type], model_weights_path+model_type+".pt")
|
47 |
print("Model file downloaded successfully.")
|
48 |
|
|
|
49 |
def load_model_if_needed(self):
|
50 |
if self.model is None:
|
51 |
print("Loading MiDaS model...")
|
@@ -58,62 +57,50 @@ class MonocularDepthEstimator:
|
|
58 |
self.is_square
|
59 |
)
|
60 |
print("Model loaded successfully")
|
61 |
-
print("Net width and height: ", (self.net_w, self.net_h))
|
62 |
|
63 |
@spaces.GPU
|
64 |
def predict(self, image, target_size):
|
65 |
-
# Load model if not loaded
|
66 |
self.load_model_if_needed()
|
67 |
-
|
68 |
-
# convert img to tensor and load to gpu
|
69 |
img_tensor = torch.from_numpy(image).to('cuda').unsqueeze(0)
|
70 |
|
71 |
if self.is_optimize:
|
72 |
img_tensor = img_tensor.to(memory_format=torch.channels_last)
|
73 |
img_tensor = img_tensor.half()
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
82 |
)
|
83 |
-
.squeeze()
|
84 |
-
.cpu()
|
85 |
-
.numpy()
|
86 |
-
)
|
87 |
|
88 |
return prediction
|
89 |
|
90 |
def process_prediction(self, depth_map):
|
91 |
-
# normalizing depth image
|
92 |
depth_min = depth_map.min()
|
93 |
depth_max = depth_map.max()
|
94 |
normalized_depth = 255 * (depth_map - depth_min) / (depth_max - depth_min)
|
95 |
-
|
96 |
grayscale_depthmap = np.repeat(np.expand_dims(normalized_depth, 2), 3, axis=2)
|
97 |
depth_colormap = cv2.applyColorMap(np.uint8(grayscale_depthmap), cv2.COLORMAP_INFERNO)
|
98 |
-
|
99 |
return normalized_depth/255, depth_colormap/255
|
100 |
|
101 |
@spaces.GPU
|
102 |
def make_prediction(self, image):
|
103 |
-
image = image.copy()
|
104 |
try:
|
105 |
print("Starting depth estimation...")
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
# monocular depth prediction
|
113 |
-
pred = self.predict(image_tranformed, target_size=original_image_rgb.shape[1::-1])
|
114 |
-
|
115 |
-
# process the model predictions
|
116 |
-
depthmap, depth_colormap = self.process_prediction(pred)
|
117 |
print("Depth estimation complete")
|
118 |
return depthmap, depth_colormap
|
119 |
except Exception as e:
|
@@ -121,36 +108,7 @@ class MonocularDepthEstimator:
|
|
121 |
import traceback
|
122 |
print(traceback.format_exc())
|
123 |
raise
|
124 |
-
|
125 |
-
@spaces.GPU
|
126 |
-
def run(self, input_path):
|
127 |
-
cap = cv2.VideoCapture(input_path)
|
128 |
-
|
129 |
-
if not cap.isOpened():
|
130 |
-
print("Error opening video file")
|
131 |
-
return
|
132 |
-
|
133 |
-
with torch.no_grad():
|
134 |
-
while cap.isOpened():
|
135 |
-
inference_start_time = time.time()
|
136 |
-
ret, frame = cap.read()
|
137 |
-
|
138 |
-
if ret == True:
|
139 |
-
_, depth_colormap = self.make_prediction(frame)
|
140 |
-
inference_end_time = time.time()
|
141 |
-
fps = round(1/(inference_end_time - inference_start_time))
|
142 |
-
cv2.putText(depth_colormap, f'FPS: {fps}', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (10, 255, 100), 2)
|
143 |
-
cv2.imshow('MiDaS Depth Estimation - Press Escape to close window ', depth_colormap)
|
144 |
-
|
145 |
-
if cv2.waitKey(1) == 27: # Escape key
|
146 |
-
break
|
147 |
-
else:
|
148 |
-
break
|
149 |
-
|
150 |
-
cap.release()
|
151 |
-
cv2.destroyAllWindows()
|
152 |
-
|
153 |
-
|
154 |
if __name__ == "__main__":
|
155 |
depth_estimator = MonocularDepthEstimator(model_type="dpt_hybrid_384")
|
156 |
depth_estimator.run("assets/videos/testvideo2.mp4")
|
|
|
25 |
square=False,
|
26 |
grayscale=False):
|
27 |
|
28 |
+
# Don't initialize any CUDA/GPU stuff here
|
29 |
self.model_type = model_type
|
30 |
self.model_weights_path = model_weights_path
|
31 |
self.is_optimize = optimize
|
|
|
37 |
self.transform = None
|
38 |
self.net_w = None
|
39 |
self.net_h = None
|
|
|
|
|
40 |
|
41 |
+
print("Initializing parameters...")
|
42 |
if not os.path.exists(model_weights_path+model_type+".pt"):
|
43 |
print("Model file not found. Downloading...")
|
44 |
urllib.request.urlretrieve(MODEL_FILE_URL[model_type], model_weights_path+model_type+".pt")
|
45 |
print("Model file downloaded successfully.")
|
46 |
|
47 |
+
@spaces.GPU
|
48 |
def load_model_if_needed(self):
|
49 |
if self.model is None:
|
50 |
print("Loading MiDaS model...")
|
|
|
57 |
self.is_square
|
58 |
)
|
59 |
print("Model loaded successfully")
|
|
|
60 |
|
61 |
@spaces.GPU
|
62 |
def predict(self, image, target_size):
|
|
|
63 |
self.load_model_if_needed()
|
|
|
|
|
64 |
img_tensor = torch.from_numpy(image).to('cuda').unsqueeze(0)
|
65 |
|
66 |
if self.is_optimize:
|
67 |
img_tensor = img_tensor.to(memory_format=torch.channels_last)
|
68 |
img_tensor = img_tensor.half()
|
69 |
|
70 |
+
with torch.no_grad():
|
71 |
+
prediction = self.model.forward(img_tensor)
|
72 |
+
prediction = (
|
73 |
+
torch.nn.functional.interpolate(
|
74 |
+
prediction.unsqueeze(1),
|
75 |
+
size=target_size[::-1],
|
76 |
+
mode="bicubic",
|
77 |
+
align_corners=False,
|
78 |
+
)
|
79 |
+
.squeeze()
|
80 |
+
.cpu()
|
81 |
+
.numpy()
|
82 |
)
|
|
|
|
|
|
|
|
|
83 |
|
84 |
return prediction
|
85 |
|
86 |
def process_prediction(self, depth_map):
|
|
|
87 |
depth_min = depth_map.min()
|
88 |
depth_max = depth_map.max()
|
89 |
normalized_depth = 255 * (depth_map - depth_min) / (depth_max - depth_min)
|
|
|
90 |
grayscale_depthmap = np.repeat(np.expand_dims(normalized_depth, 2), 3, axis=2)
|
91 |
depth_colormap = cv2.applyColorMap(np.uint8(grayscale_depthmap), cv2.COLORMAP_INFERNO)
|
|
|
92 |
return normalized_depth/255, depth_colormap/255
|
93 |
|
94 |
@spaces.GPU
|
95 |
def make_prediction(self, image):
|
|
|
96 |
try:
|
97 |
print("Starting depth estimation...")
|
98 |
+
image = image.copy()
|
99 |
+
original_image_rgb = np.flip(image, 2)
|
100 |
+
self.load_model_if_needed()
|
101 |
+
image_tranformed = self.transform({"image": original_image_rgb/255})["image"]
|
102 |
+
pred = self.predict(image_tranformed, target_size=original_image_rgb.shape[1::-1])
|
103 |
+
depthmap, depth_colormap = self.process_prediction(pred)
|
|
|
|
|
|
|
|
|
|
|
104 |
print("Depth estimation complete")
|
105 |
return depthmap, depth_colormap
|
106 |
except Exception as e:
|
|
|
108 |
import traceback
|
109 |
print(traceback.format_exc())
|
110 |
raise
|
111 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
if __name__ == "__main__":
|
113 |
depth_estimator = MonocularDepthEstimator(model_type="dpt_hybrid_384")
|
114 |
depth_estimator.run("assets/videos/testvideo2.mp4")
|