File size: 26,874 Bytes
77a88de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574fdd2
77a88de
 
 
 
 
 
 
 
 
 
 
 
 
574fdd2
77a88de
 
 
 
 
 
 
 
 
 
574fdd2
77a88de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574fdd2
77a88de
 
 
574fdd2
77a88de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574fdd2
77a88de
 
 
 
574fdd2
77a88de
 
 
 
 
 
 
 
574fdd2
77a88de
 
 
 
 
 
 
 
574fdd2
77a88de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574fdd2
77a88de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
574fdd2
77a88de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils.misc
import numpy as np

from nets.blocks import CNBlockConfig, ConvNeXt, conv1x1, RelUpdateBlock, InputPadder, CorrBlock, BasicEncoder

class Net(nn.Module):
    def __init__(
            self,
            seqlen,
            use_attn=True,
            use_mixer=False,
            use_conv=False,
            use_convb=False,
            use_basicencoder=False,
            use_sinmotion=False,
            use_relmotion=False,
            use_sinrelmotion=False,
            use_feats8=False,
            no_time=False,
            no_space=False,
            no_split=False,
            no_ctx=False,
            full_split=False,
            corr_levels=5,
            corr_radius=4,
            num_blocks=3,
            dim=128,
            hdim=128,
            init_weights=True,
    ):
        super(Net, self).__init__()

        self.dim = dim
        self.hdim = hdim

        self.no_time = no_time
        self.no_space = no_space
        self.seqlen = seqlen
        self.corr_levels = corr_levels
        self.corr_radius = corr_radius
        self.corr_channel = self.corr_levels * (self.corr_radius * 2 + 1) ** 2
        self.num_blocks = num_blocks

        self.use_feats8 = use_feats8
        self.use_basicencoder = use_basicencoder
        self.use_sinmotion = use_sinmotion
        self.use_relmotion = use_relmotion
        self.use_sinrelmotion = use_sinrelmotion
        self.no_split = no_split
        self.no_ctx = no_ctx
        self.full_split = full_split

        if use_basicencoder:
            if self.full_split:
                self.fnet = BasicEncoder(input_dim=3, output_dim=self.dim, stride=8)
                self.cnet = BasicEncoder(input_dim=3, output_dim=self.dim, stride=8)
            else:
                if self.no_split:
                    self.fnet = BasicEncoder(input_dim=3, output_dim=self.dim, stride=8)
                else:
                    self.fnet = BasicEncoder(input_dim=3, output_dim=self.dim*2, stride=8)
        else:
            block_setting = [
                CNBlockConfig(96, 192, 3, True), # 4x
                CNBlockConfig(192, 384, 3, False), # 8x
                CNBlockConfig(384, None, 9, False), # 8x
            ]
            self.cnn = ConvNeXt(block_setting, stochastic_depth_prob=0.0, init_weights=init_weights)
            if self.no_split:
                self.dot_conv = conv1x1(384, dim)
            else:
                self.dot_conv = conv1x1(384, dim*2)
            
        self.upsample_weight = nn.Sequential(
            # convex combination of 3x3 patches
            nn.Conv2d(dim, dim * 2, 3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(dim * 2, 64 * 9, 1, padding=0)
        )
        self.flow_head = nn.Sequential(
            nn.Conv2d(dim, 2*dim, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(2*dim, 2, kernel_size=3, padding=1)
        )
        self.visconf_head = nn.Sequential(
            nn.Conv2d(dim, 2*dim, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(2*dim, 2, kernel_size=3, padding=1)
        )

        if self.use_sinrelmotion:
            self.pdim = 84 # 32*2
        elif self.use_relmotion:
            self.pdim = 4
        elif self.use_sinmotion:
            self.pdim = 42
        else:
            self.pdim = 2
            
        self.update_block = RelUpdateBlock(self.corr_channel, self.num_blocks, cdim=dim, hdim=hdim, pdim=self.pdim,
                                           use_attn=use_attn, use_mixer=use_mixer, use_conv=use_conv, use_convb=use_convb,
                                           use_layer_scale=True, no_time=no_time, no_space=no_space,
                                           no_ctx=no_ctx)

        time_line = torch.linspace(0, seqlen-1, seqlen).reshape(1, seqlen, 1)
        self.register_buffer("time_emb", utils.misc.get_1d_sincos_pos_embed_from_grid(self.dim, time_line[0])) # 1,S,C

        
    def fetch_time_embed(self, t, dtype, is_training=False):
        S = self.time_emb.shape[1]
        if t == S:
            return self.time_emb.to(dtype)
        elif t==1:
            if is_training:
                ind = np.random.choice(S)
                return self.time_emb[:,ind:ind+1].to(dtype)
            else:
                return self.time_emb[:,1:2].to(dtype)
        else:
            time_emb = self.time_emb.float()
            time_emb = F.interpolate(time_emb.permute(0, 2, 1), size=t, mode="linear").permute(0, 2, 1) 
            return time_emb.to(dtype)
    
    def coords_grid(self, batch, ht, wd, device, dtype):
        coords = torch.meshgrid(torch.arange(ht, device=device, dtype=dtype), torch.arange(wd, device=device, dtype=dtype), indexing='ij')
        coords = torch.stack(coords[::-1], dim=0)
        return coords[None].repeat(batch, 1, 1, 1)

    def initialize_flow(self, img):
        """ Flow is represented as difference between two coordinate grids flow = coords2 - coords1"""
        N, C, H, W = img.shape
        coords1 = self.coords_grid(N, H//8, W//8, device=img.device)
        coords2 = self.coords_grid(N, H//8, W//8, device=img.device)
        return coords1, coords2

    def upsample_data(self, flow, mask):
        """ Upsample [H/8, W/8, C] -> [H, W, C] using convex combination """
        N, C, H, W = flow.shape
        mask = mask.view(N, 1, 9, 8, 8, H, W)
        mask = torch.softmax(mask, dim=2)

        up_flow = F.unfold(8 * flow, [3,3], padding=1)
        up_flow = up_flow.view(N, 2, 9, 1, 1, H, W)

        up_flow = torch.sum(mask * up_flow, dim=2)
        up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
        
        return up_flow.reshape(N, 2, 8*H, 8*W).to(flow.dtype)

    def get_T_padded_images(self, images, T, S, is_training, stride=None, pad=True):
        B,T,C,H,W = images.shape
        indices = None
        if T > 2:
            step = S // 2 if stride is None else stride
            indices = []
            start = 0
            while start + S < T:
                indices.append(start)
                start += step
            indices.append(start)
            Tpad = indices[-1]+S-T
            if pad:
                if is_training:
                    assert Tpad == 0
                else:
                    images = images.reshape(B,1,T,C*H*W)
                    if Tpad > 0:
                        padding_tensor = images[:,:,-1:,:].expand(B,1,Tpad,C*H*W)
                        images = torch.cat([images, padding_tensor], dim=2)
                    images = images.reshape(B,T+Tpad,C,H,W)
                    T = T+Tpad
        else:
            assert T == 2
        return images, T, indices

    def get_fmaps(self, images_, B, T, sw, is_training):
        _, _, H_pad, W_pad = images_.shape # revised HW

        C, H8, W8 = self.dim*2, H_pad//8, W_pad//8
        if self.no_split:
            C = self.dim

        fmaps_chunk_size = 32
        if (not is_training) and (T > fmaps_chunk_size):
            images = images_.reshape(B,T,3,H_pad,W_pad)
            fmaps = []
            for t in range(0, T, fmaps_chunk_size):
                images_chunk = images[:, t : t + fmaps_chunk_size]
                images_chunk = images_chunk.cuda()
                if self.use_basicencoder:
                    if self.full_split:
                        fmaps_chunk1 = self.fnet(images_chunk.reshape(-1, 3, H_pad, W_pad))
                        fmaps_chunk2 = self.cnet(images_chunk.reshape(-1, 3, H_pad, W_pad))
                        fmaps_chunk = torch.cat([fmaps_chunk1, fmaps_chunk2], axis=1)
                    else:
                        fmaps_chunk = self.fnet(images_chunk.reshape(-1, 3, H_pad, W_pad))
                else:
                    fmaps_chunk = self.cnn(images_chunk.reshape(-1, 3, H_pad, W_pad))
                    if t==0 and sw is not None and sw.save_this:
                        sw.summ_feat('1_model/fmap_raw', fmaps_chunk[0:1])
                    fmaps_chunk = self.dot_conv(fmaps_chunk) # B*T,C,H8,W8
                T_chunk = images_chunk.shape[1]
                fmaps.append(fmaps_chunk.reshape(B, -1, C, H8, W8))
            fmaps_ = torch.cat(fmaps, dim=1).reshape(-1, C, H8, W8)
        else:
            if not is_training:
                # sometimes we need to move things to cuda here
                images_ = images_.cuda()
            if self.use_basicencoder:
                if self.full_split:
                    fmaps1_ = self.fnet(images_)
                    fmaps2_ = self.cnet(images_)
                    fmaps_ = torch.cat([fmaps1_, fmaps2_], axis=1)
                else:
                    fmaps_ = self.fnet(images_)
            else:
                fmaps_ = self.cnn(images_)
                if sw is not None and sw.save_this:
                    sw.summ_feat('1_model/fmap_raw', fmaps_[0:1])
                fmaps_ = self.dot_conv(fmaps_) # B*T,C,H8,W8
        return fmaps_
    
    def forward(self, images, iters=4, sw=None, is_training=False, stride=None):
        B,T,C,H,W = images.shape
        S = self.seqlen
        device = images.device
        dtype = images.dtype

        print('images', images.shape)

        # images are in [0,255]
        mean = torch.as_tensor([0.485, 0.456, 0.406], device=device).reshape(1,1,3,1,1).to(images.dtype)
        std = torch.as_tensor([0.229, 0.224, 0.225], device=device).reshape(1,1,3,1,1).to(images.dtype)
        images = images / 255.0
        images = (images - mean)/std
        # print("a0 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))

        T_bak = T
        if stride is not None:
            pad = False
        else:
            pad = True
        images, T, indices = self.get_T_padded_images(images, T, S, is_training, stride=stride, pad=pad)

        images = images.contiguous()
        images_ = images.reshape(B*T,3,H,W)
        padder = InputPadder(images_.shape)
        images_ = padder.pad(images_)[0]

        # print("a1 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
        
        _, _, H_pad, W_pad = images_.shape # revised HW
        C, H8, W8 = self.dim*2, H_pad//8, W_pad//8
        C2 = C//2
        if self.no_split:
            C = self.dim
            C2 = C

        fmaps = self.get_fmaps(images_, B, T, sw, is_training).reshape(B,T,C,H8,W8)
        device = fmaps.device
        # print("a2 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))

        fmap_anchor = fmaps[:,0]

        if T<=2 or is_training:
            # note: collecting preds can get expensive on a long video
            all_flow_preds = []
            all_visconf_preds = []
        else:
            all_flow_preds = None
            all_visconf_preds = None

        if T > 2: # multiframe tracking
            
            # we will store our final outputs in these tensors
            full_flows = torch.zeros((B,T,2,H,W), dtype=dtype, device=device)
            full_visconfs = torch.zeros((B,T,2,H,W), dtype=dtype, device=device)
            # 1/8 resolution 
            full_flows8 = torch.zeros((B,T,2,H_pad//8,W_pad//8), dtype=dtype, device=device)
            full_visconfs8 = torch.zeros((B,T,2,H_pad//8,W_pad//8), dtype=dtype, device=device)

            if self.use_feats8:
                full_feats8 = torch.zeros((B,T,C2,H_pad//8,W_pad//8), dtype=dtype, device=device)
            visits = np.zeros((T))
            # print("a3 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))

            for ii, ind in enumerate(indices):
                ara = np.arange(ind,ind+S)
                # print('ara', ara)
                if ii < len(indices)-1:
                    next_ind = indices[ii+1]
                    next_ara = np.arange(next_ind,next_ind+S)
                
                # print("torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024), 'ara', ara)
                fmaps2 = fmaps[:,ara]
                flows8 = full_flows8[:,ara].reshape(B*(S),2,H_pad//8,W_pad//8).detach()
                visconfs8 = full_visconfs8[:,ara].reshape(B*(S),2,H_pad//8,W_pad//8).detach()

                if self.use_feats8:
                    if ind==0:
                        feats8 = None
                    else:
                        feats8 = full_feats8[:,ara].reshape(B*(S),C2,H_pad//8,W_pad//8).detach()
                else:
                    feats8 = None
                # print("a4 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))

                flow_predictions, visconf_predictions, flows8, visconfs8, feats8 = self.forward_window(
                    fmap_anchor, fmaps2, visconfs8, iters=iters, flowfeat=feats8, flows8=flows8,
                    is_training=is_training)
                # print("a5 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))

                unpad_flow_predictions = []
                unpad_visconf_predictions = []
                for i in range(len(flow_predictions)):
                    flow_predictions[i] = padder.unpad(flow_predictions[i])
                    unpad_flow_predictions.append(flow_predictions[i].reshape(B,S,2,H,W))
                    visconf_predictions[i] = padder.unpad(torch.sigmoid(visconf_predictions[i]))
                    unpad_visconf_predictions.append(visconf_predictions[i].reshape(B,S,2,H,W))
                # print("a6 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))

                full_flows[:,ara] = unpad_flow_predictions[-1].reshape(B,S,2,H,W)
                full_flows8[:,ara] = flows8.reshape(B,S,2,H_pad//8,W_pad//8)
                full_visconfs[:,ara] = unpad_visconf_predictions[-1].reshape(B,S,2,H,W)
                full_visconfs8[:,ara] = visconfs8.reshape(B,S,2,H_pad//8,W_pad//8)
                if self.use_feats8:
                    full_feats8[:,ara] = feats8.reshape(B,S,C2,H_pad//8,W_pad//8)
                visits[ara] += 1
                # print("a7 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))

                if is_training:
                    all_flow_preds.append(unpad_flow_predictions)
                    all_visconf_preds.append(unpad_visconf_predictions)
                else:
                    del unpad_flow_predictions
                    del unpad_visconf_predictions

                # for the next iter, replace empty data with nearest available preds
                invalid_idx = np.where(visits==0)[0]
                valid_idx = np.where(visits>0)[0]
                for idx in invalid_idx:
                    nearest = valid_idx[np.argmin(np.abs(valid_idx - idx))]
                    # print('replacing %d with %d' % (idx, nearest))
                    full_flows8[:,idx] = full_flows8[:,nearest]
                    full_visconfs8[:,idx] = full_visconfs8[:,nearest]
                    if self.use_feats8:
                        full_feats8[:,idx] = full_feats8[:,nearest]
                # print("a8 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
        else: # flow

            flows8 = torch.zeros((B,2,H_pad//8,W_pad//8), dtype=dtype, device=device)
            visconfs8 = torch.zeros((B,2,H_pad//8,W_pad//8), dtype=dtype, device=device)

            flow_predictions, visconf_predictions, flows8, visconfs8, feats8 = self.forward_window(
                fmap_anchor, fmaps[:,1:2], visconfs8, iters=iters, flowfeat=None, flows8=flows8,
                is_training=is_training)
            unpad_flow_predictions = []
            unpad_visconf_predictions = []
            for i in range(len(flow_predictions)):
                flow_predictions[i] = padder.unpad(flow_predictions[i])
                all_flow_preds.append(flow_predictions[i].reshape(B,2,H,W))
                visconf_predictions[i] = padder.unpad(torch.sigmoid(visconf_predictions[i]))
                all_visconf_preds.append(visconf_predictions[i].reshape(B,2,H,W))
            full_flows = all_flow_preds[-1].reshape(B,2,H,W)
            full_visconfs = all_visconf_preds[-1].reshape(B,2,H,W)
                
        if (not is_training) and (T > 2):
            full_flows = full_flows[:,:T_bak]
            full_visconfs = full_visconfs[:,:T_bak]
        # print("a9 torch.cuda.memory_allocated: %.1fGB"%(torch.cuda.memory_allocated(0)/1024/1024/1024))
            
        return full_flows, full_visconfs, all_flow_preds, all_visconf_preds
    
    def forward_sliding(self, images, iters=4, sw=None, is_training=False, window_len=None, stride=None):
        B,T,C,H,W = images.shape
        S = self.seqlen if window_len is None else window_len
        device = images.device
        dtype = images.dtype
        stride = S // 2 if stride is None else stride

        T_bak = T
        images, T, indices = self.get_T_padded_images(images, T, S, is_training, stride)
        assert stride <= S // 2

        images = images.contiguous()
        images_ = images.reshape(B*T,3,H,W)
        padder = InputPadder(images_.shape)
        images_ = padder.pad(images_)[0]

        _, _, H_pad, W_pad = images_.shape # revised HW
        C, H8, W8 = self.dim*2, H_pad//8, W_pad//8
        C2 = C//2
        if self.no_split:
            C = self.dim
            C2 = C
            
        all_flow_preds = None
        all_visconf_preds = None
        
        if T<=2:
            # note: collecting preds can get expensive on a long video
            all_flow_preds = []
            all_visconf_preds = []
            
            fmaps = self.get_fmaps(images_, B, T, sw, is_training).reshape(B,T,C,H8,W8)
            device = fmaps.device
            
            flows8 = torch.zeros((B,2,H_pad//8,W_pad//8), dtype=dtype, device=device)
            visconfs8 = torch.zeros((B,2,H_pad//8,W_pad//8), dtype=dtype, device=device)
                
            fmap_anchor = fmaps[:,0]
            
            flow_predictions, visconf_predictions, flows8, visconfs8, feats8 = self.forward_window(
                fmap_anchor, fmaps[:,1:2], visconfs8, iters=iters, flowfeat=None, flows8=flows8,
                is_training=is_training)
            unpad_flow_predictions = []
            unpad_visconf_predictions = []
            for i in range(len(flow_predictions)):
                flow_predictions[i] = padder.unpad(flow_predictions[i])
                all_flow_preds.append(flow_predictions[i].reshape(B,2,H,W))
                visconf_predictions[i] = padder.unpad(torch.sigmoid(visconf_predictions[i]))
                all_visconf_preds.append(visconf_predictions[i].reshape(B,2,H,W))
            full_flows = all_flow_preds[-1].reshape(B,2,H,W).detach().cpu()
            full_visconfs = all_visconf_preds[-1].reshape(B,2,H,W).detach().cpu()
            
            return full_flows, full_visconfs, all_flow_preds, all_visconf_preds

        assert T > 2 # multiframe tracking
        
        if is_training:
            all_flow_preds = []
            all_visconf_preds = []
            
        # we will store our final outputs in these cpu tensors
        full_flows = torch.zeros((B,T,2,H,W), dtype=dtype, device='cpu')
        full_visconfs = torch.zeros((B,T,2,H,W), dtype=dtype, device='cpu')
        
        images_ = images_.reshape(B,T,3,H_pad,W_pad)
        fmap_anchor = self.get_fmaps(images_[:,:1].reshape(-1,3,H_pad,W_pad), B, 1, sw, is_training).reshape(B,C,H8,W8)
        device = fmap_anchor.device
        full_visited = torch.zeros((T,), dtype=torch.bool, device=device)

        for ii, ind in enumerate(indices):
            ara = np.arange(ind,ind+S)
            if ii == 0:
                flows8 = torch.zeros((B,S,2,H_pad//8,W_pad//8), dtype=dtype, device=device)
                visconfs8 = torch.zeros((B,S,2,H_pad//8,W_pad//8), dtype=dtype, device=device)
                fmaps2 = self.get_fmaps(images_[:,ara].reshape(-1,3,H_pad,W_pad), B, S, sw, is_training).reshape(B,S,C,H8,W8)
            else:
                flows8 = torch.cat([flows8[:,stride:stride+S//2], flows8[:,stride+S//2-1:stride+S//2].repeat(1,S//2,1,1,1)], dim=1)
                visconfs8 = torch.cat([visconfs8[:,stride:stride+S//2], visconfs8[:,stride+S//2-1:stride+S//2].repeat(1,S//2,1,1,1)], dim=1)
                fmaps2 = torch.cat([fmaps2[:,stride:stride+S//2], 
                                    self.get_fmaps(images_[:,np.arange(ind+S//2,ind+S)].reshape(-1,3,H_pad,W_pad), B, S//2, sw, is_training).reshape(B,S//2,C,H8,W8)], dim=1)
            
            flows8 = flows8.reshape(B*S,2,H_pad//8,W_pad//8).detach()
            visconfs8 = visconfs8.reshape(B*S,2,H_pad//8,W_pad//8).detach()
            
            flow_predictions, visconf_predictions, flows8, visconfs8, _ = self.forward_window(
                fmap_anchor, fmaps2, visconfs8, iters=iters, flowfeat=None, flows8=flows8,
                is_training=is_training)

            unpad_flow_predictions = []
            unpad_visconf_predictions = []
            for i in range(len(flow_predictions)):
                flow_predictions[i] = padder.unpad(flow_predictions[i])
                unpad_flow_predictions.append(flow_predictions[i].reshape(B,S,2,H,W))
                visconf_predictions[i] = padder.unpad(torch.sigmoid(visconf_predictions[i]))
                unpad_visconf_predictions.append(visconf_predictions[i].reshape(B,S,2,H,W))

            current_visiting = torch.zeros((T,), dtype=torch.bool, device=device)
            current_visiting[ara] = True
            
            to_fill = current_visiting & (~full_visited)
            to_fill_sum = to_fill.sum().item()
            full_flows[:,to_fill] = unpad_flow_predictions[-1].reshape(B,S,2,H,W)[:,-to_fill_sum:].detach().cpu()
            full_visconfs[:,to_fill] = unpad_visconf_predictions[-1].reshape(B,S,2,H,W)[:,-to_fill_sum:].detach().cpu()
            full_visited |= current_visiting

            if is_training:
                all_flow_preds.append(unpad_flow_predictions)
                all_visconf_preds.append(unpad_visconf_predictions)
            else:
                del unpad_flow_predictions
                del unpad_visconf_predictions
                
            flows8 = flows8.reshape(B,S,2,H_pad//8,W_pad//8)
            visconfs8 = visconfs8.reshape(B,S,2,H_pad//8,W_pad//8)
                
        if not is_training:
            full_flows = full_flows[:,:T_bak]
            full_visconfs = full_visconfs[:,:T_bak]
            
        return full_flows, full_visconfs, all_flow_preds, all_visconf_preds
        
    def forward_window(self, fmap1_single, fmaps2, visconfs8, iters=None, flowfeat=None, flows8=None, sw=None, is_training=False):
        B,S,C,H8,W8 = fmaps2.shape
        device = fmaps2.device
        dtype = fmaps2.dtype

        flow_predictions = []
        visconf_predictions = []

        fmap1 = fmap1_single.unsqueeze(1).repeat(1,S,1,1,1) # B,S,C,H,W
        fmap1 = fmap1.reshape(B*(S),C,H8,W8).contiguous()

        fmap2 = fmaps2.reshape(B*(S),C,H8,W8).contiguous()

        visconfs8 = visconfs8.reshape(B*(S),2,H8,W8).contiguous()

        corr_fn = CorrBlock(fmap1, fmap2, self.corr_levels, self.corr_radius)

        coords1 = self.coords_grid(B*(S), H8, W8, device=fmap1.device, dtype=dtype)

        if self.no_split:
            flowfeat, ctxfeat = fmap1.clone(), fmap1.clone()
        else:
            if flowfeat is not None:
                _, ctxfeat = torch.split(fmap1, [self.dim, self.dim], dim=1)
            else:
                flowfeat, ctxfeat = torch.split(fmap1, [self.dim, self.dim], dim=1)
                
        # add pos emb to ctxfeat (and not flowfeat), since ctxfeat is untouched across iters
        time_emb = self.fetch_time_embed(S, ctxfeat.dtype, is_training).reshape(1,S,self.dim,1,1).repeat(B,1,1,1,1)
        ctxfeat = ctxfeat + time_emb.reshape(B*S,self.dim,1,1)

        if self.no_ctx:
            flowfeat = flowfeat + time_emb.reshape(B*S,self.dim,1,1)
            
        for itr in range(iters):
            _, _, H8, W8 = flows8.shape
            flows8 = flows8.detach()
            coords2 = (coords1 + flows8).detach() # B*S,2,H,W
            corr = corr_fn(coords2).to(dtype)

            if self.use_relmotion or self.use_sinrelmotion:
                coords_ = coords2.reshape(B,S,2,H8*W8).permute(0,1,3,2) # B,S,H8*W8,2
                rel_coords_forward = coords_[:, :-1] - coords_[:, 1:]
                rel_coords_backward = coords_[:, 1:] - coords_[:, :-1]
                rel_coords_forward = torch.nn.functional.pad(
                    rel_coords_forward, (0, 0, 0, 0, 0, 1) # pad the 3rd-last dim (S) by (0,1)
                )
                rel_coords_backward = torch.nn.functional.pad(
                    rel_coords_backward, (0, 0, 0, 0, 1, 0) # pad the 3rd-last dim (S) by (1,0)
                )
                rel_coords = torch.cat([rel_coords_forward, rel_coords_backward], dim=-1) # B,S,H8*W8,4

                if self.use_sinrelmotion:
                    rel_pos_emb_input = utils.misc.posenc(
                        rel_coords,
                        min_deg=0,
                        max_deg=10,
                    )  # B,S,H*W,pdim
                    motion = rel_pos_emb_input.reshape(B*S,H8,W8,self.pdim).permute(0,3,1,2).to(dtype) # B*S,pdim,H8,W8
                else:
                    motion = rel_coords.reshape(B*S,H8,W8,4).permute(0,3,1,2).to(dtype) # B*S,4,H8,W8
                
            else:
                if self.use_sinmotion:
                    pos_emb_input = utils.misc.posenc(
                        flows8.reshape(B,S,H8*W8,2),
                        min_deg=0,
                        max_deg=10,
                    )  # B,S,H*W,pdim
                    motion = pos_emb_input.reshape(B*S,H8,W8,self.pdim).permute(0,3,1,2).to(dtype) # B*S,pdim,H8,W8
                else:
                    motion = flows8
                    
            flowfeat = self.update_block(flowfeat, ctxfeat, visconfs8, corr, motion, S)
            flow_update = self.flow_head(flowfeat)
            visconf_update = self.visconf_head(flowfeat)
            weight_update = .25 * self.upsample_weight(flowfeat)
            flows8 = flows8 + flow_update
            visconfs8 = visconfs8 + visconf_update
            flow_up = self.upsample_data(flows8, weight_update)
            visconf_up = self.upsample_data(visconfs8, weight_update)
            if not is_training: # clear mem
                flow_predictions = []
                visconf_predictions = []
            flow_predictions.append(flow_up)
            visconf_predictions.append(visconf_up)
            
        return flow_predictions, visconf_predictions, flows8, visconfs8, flowfeat