alltracker_demo / demo_dense_visualize.py
aharley's picture
added basics
6d95ea1
raw
history blame
6.95 kB
import os
import random
import torch
import sys
import torch.nn.functional as F
import numpy as np
import utils.loss
import utils.samp
import utils.data
import utils.improc
import utils.misc
import utils.saveload
import cv2
import imageio
from nets.blocks import InputPadder
from utils.visualizer import Visualizer
import torch
import requests
from PIL import Image, ImageDraw
from transformers import AutoProcessor, AutoModelForCausalLM
import numpy as np
torch.set_float32_matmul_precision('medium')
def run_example(processor, model, task_prompt, image, text_input=None):
if text_input is None:
prompt = task_prompt
else:
prompt = task_prompt + text_input
inputs = processor(text=prompt, images=image, return_tensors="pt").to('cuda', torch.float32)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
return parsed_answer
class Tracker:
def __init__(self, model, mean, std, S, stride, inference_iters, target_res, device='cuda'):
"""
Initializes the Tracker.
Args:
model: The model used to compute feature maps and forward window flow.
mean: Tensor or value used for normalizing the input.
std: Tensor or value used for normalizing the input.
S: Window size for the tracker.
stride: The stride used when updating the window.
inference_iters: Number of inference iterations.
device: Torch device, defaults to 'cuda'.
"""
self.model = model
self.mean = mean
self.std = std
self.S = S
self.stride = stride
self.inference_iters = inference_iters
self.device = device
self.target_res = target_res
self.padder = None
self.cnt = 0
self.fmap_anchor = None
self.fmaps2 = None
self.flows8 = None
self.visconfs8 = None
self.flows = [] # List to store computed flows
self.visibs = [] # List to store visibility confidences
self.rgbs = [] # List to store RGB frames
def reset(self):
"""Reset the tracker state."""
self.padder = None
self.cnt = 0
self.fmap_anchor = None
self.fmaps2 = None
self.flows8 = None
self.visconfs8 = None
self.flows = []
self.visibs = []
self.rgbs = []
def preprocess(self, rgb_frame):
# Resize frame (scale to keep maximum dimension ~1024)
scale = min(self.target_res / rgb_frame.shape[0], self.target_res / rgb_frame.shape[1])
rgb_resized = cv2.resize(rgb_frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
# Convert to tensor, normalize and move to device.
rgb_tensor = torch.from_numpy(rgb_resized).permute(2, 0, 1).float().unsqueeze(0).to(self.device)
rgb_tensor = rgb_tensor / 255.0
self.rgbs.append(rgb_tensor.cpu())
# import pdb; pdb.set_trace()
rgb_tensor = (rgb_tensor - self.mean) / self.std
return rgb_tensor
@torch.no_grad()
def track(self, rgb_frame):
"""
Process a single RGB frame and return the computed flow when available.
Args:
rgb_frame: A NumPy array containing the RGB frame.
(Assumed to be in RGB; if coming from OpenCV, convert it before passing.)
Returns:
flow_predictions: The predicted flow for the current frame (or None if not enough frames have been processed).
"""
torch.cuda.empty_cache()
rgb_tensor = self.preprocess(rgb_frame)
# Initialize padder on the first frame.
if self.cnt == 0:
self.padder = InputPadder(rgb_tensor.shape)
rgb_padded = self.padder.pad(rgb_tensor)[0]
_, _, H_pad, W_pad = rgb_padded.shape
C = 256 # Feature map channel dimension (could be parameterized if needed)
H8, W8 = H_pad // 8, W_pad // 8
# Accumulate feature maps until the window is full.
if self.cnt == 0:
self.fmap_anchor = self.model.get_fmaps(rgb_padded, 1, 1, None, False, False).reshape(1, C, H8, W8)
self.fmaps2 = self.fmap_anchor[:, None]
self.cnt += 1
return None
new_fmap = self.model.get_fmaps(rgb_padded, 1, 1, None, False, False).reshape(1, 1, C, H8, W8)
self.fmaps2 = torch.cat([self.fmaps2[:, (1 if self.fmaps2.shape[1] >= self.S else 0):].detach().clone(), new_fmap], dim=1)
# need to track
if self.cnt - self.S + 1 >= 0 and (self.cnt - self.S + 1) % self.stride == 0:
# Initialize or update temporary flow buffers.
iter_num = self.inference_iters
if self.flows8 is None:
self.flows8 = torch.zeros((self.S, 2, H_pad // 8, W_pad // 8), device=self.device)
self.visconfs8 = torch.zeros((self.S, 2, H_pad // 8, W_pad // 8), device=self.device)
# iter_num = self.inference_iters
else:
self.flows8 = torch.cat([
self.flows8[self.stride:self.stride + self.S // 2].detach().clone(),
self.flows8[self.stride + self.S // 2 - 1:self.stride + self.S // 2].detach().clone().repeat(self.S // 2, 1, 1, 1)
])
self.visconfs8 = torch.cat([
self.visconfs8[self.stride:self.stride + self.S // 2].detach().clone(),
self.visconfs8[self.stride + self.S // 2 - 1:self.stride + self.S // 2].detach().clone().repeat(self.S // 2, 1, 1, 1)
])
# import pdb; pdb.set_trace()
# Compute flow predictions using the model's forward window.
flow_predictions, visconf_predictions, self.flows8, self.visconfs8, _ = self.model.forward_window(
self.fmap_anchor,
self.fmaps2,
self.visconfs8,
iters=iter_num,
flowfeat=None,
flows8=self.flows8,
is_training=False
)
flow_predictions = self.padder.unpad(flow_predictions[-1][0 if self.cnt == self.S - 1 else -self.stride:])
visconf_predictions = self.padder.unpad(torch.sigmoid(visconf_predictions[-1][0 if self.cnt == self.S - 1 else -self.stride:]))
self.cnt += 1
self.flows.append(flow_predictions.cpu())
self.visibs.append(visconf_predictions.cpu())
return flow_predictions, visconf_predictions
self.cnt += 1
return None