Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- demo_dense_visualize.py +0 -21
demo_dense_visualize.py
CHANGED
@@ -1,17 +1,7 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
import torch
|
4 |
-
import signal
|
5 |
-
import socket
|
6 |
import sys
|
7 |
-
import json
|
8 |
import torch.nn.functional as F
|
9 |
import numpy as np
|
10 |
-
import argparse
|
11 |
-
from pathlib import Path
|
12 |
-
import torch.optim as optim
|
13 |
-
from torch.cuda.amp import GradScaler
|
14 |
-
from lightning_fabric import Fabric
|
15 |
|
16 |
import utils.loss
|
17 |
import utils.samp
|
@@ -19,24 +9,13 @@ import utils.data
|
|
19 |
import utils.improc
|
20 |
import utils.misc
|
21 |
import utils.saveload
|
22 |
-
from tensorboardX import SummaryWriter
|
23 |
-
import datetime
|
24 |
-
import time
|
25 |
import cv2
|
26 |
-
import imageio
|
27 |
from nets.blocks import InputPadder
|
28 |
-
from tqdm import tqdm
|
29 |
-
# from pytorch_lightning.callbacks import BaseFinetuning
|
30 |
-
from utils.visualizer import Visualizer
|
31 |
-
from torchvision.transforms.functional import resize
|
32 |
|
33 |
import torch
|
34 |
-
import requests
|
35 |
from PIL import Image, ImageDraw
|
36 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
37 |
import numpy as np
|
38 |
|
39 |
-
|
40 |
torch.set_float32_matmul_precision('medium')
|
41 |
|
42 |
def run_example(processor, model, task_prompt, image, text_input=None):
|
|
|
|
|
|
|
1 |
import torch
|
|
|
|
|
2 |
import sys
|
|
|
3 |
import torch.nn.functional as F
|
4 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
import utils.loss
|
7 |
import utils.samp
|
|
|
9 |
import utils.improc
|
10 |
import utils.misc
|
11 |
import utils.saveload
|
|
|
|
|
|
|
12 |
import cv2
|
|
|
13 |
from nets.blocks import InputPadder
|
|
|
|
|
|
|
|
|
14 |
|
15 |
import torch
|
|
|
16 |
from PIL import Image, ImageDraw
|
|
|
17 |
import numpy as np
|
18 |
|
|
|
19 |
torch.set_float32_matmul_precision('medium')
|
20 |
|
21 |
def run_example(processor, model, task_prompt, image, text_input=None):
|