Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +1 -0
- demo_dense_visualize.py +50 -0
app.py
CHANGED
@@ -69,6 +69,7 @@ tracker = Tracker(
|
|
69 |
stride=8,
|
70 |
inference_iters=4,
|
71 |
target_res=1024,
|
|
|
72 |
)
|
73 |
|
74 |
# -------------------- Step 1: Extract the First Frame -------------------- #
|
|
|
69 |
stride=8,
|
70 |
inference_iters=4,
|
71 |
target_res=1024,
|
72 |
+
device=device,
|
73 |
)
|
74 |
|
75 |
# -------------------- Step 1: Extract the First Frame -------------------- #
|
demo_dense_visualize.py
CHANGED
@@ -1,9 +1,17 @@
|
|
1 |
import os
|
2 |
import random
|
3 |
import torch
|
|
|
|
|
4 |
import sys
|
|
|
5 |
import torch.nn.functional as F
|
6 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
import utils.loss
|
9 |
import utils.samp
|
@@ -11,10 +19,16 @@ import utils.data
|
|
11 |
import utils.improc
|
12 |
import utils.misc
|
13 |
import utils.saveload
|
|
|
|
|
|
|
14 |
import cv2
|
15 |
import imageio
|
16 |
from nets.blocks import InputPadder
|
|
|
|
|
17 |
from utils.visualizer import Visualizer
|
|
|
18 |
|
19 |
import torch
|
20 |
import requests
|
@@ -43,6 +57,42 @@ def run_example(processor, model, task_prompt, image, text_input=None):
|
|
43 |
|
44 |
return parsed_answer
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
class Tracker:
|
47 |
def __init__(self, model, mean, std, S, stride, inference_iters, target_res, device='cuda'):
|
48 |
"""
|
|
|
1 |
import os
|
2 |
import random
|
3 |
import torch
|
4 |
+
import signal
|
5 |
+
import socket
|
6 |
import sys
|
7 |
+
import json
|
8 |
import torch.nn.functional as F
|
9 |
import numpy as np
|
10 |
+
import argparse
|
11 |
+
from pathlib import Path
|
12 |
+
import torch.optim as optim
|
13 |
+
from torch.cuda.amp import GradScaler
|
14 |
+
from lightning_fabric import Fabric
|
15 |
|
16 |
import utils.loss
|
17 |
import utils.samp
|
|
|
19 |
import utils.improc
|
20 |
import utils.misc
|
21 |
import utils.saveload
|
22 |
+
from tensorboardX import SummaryWriter
|
23 |
+
import datetime
|
24 |
+
import time
|
25 |
import cv2
|
26 |
import imageio
|
27 |
from nets.blocks import InputPadder
|
28 |
+
from tqdm import tqdm
|
29 |
+
# from pytorch_lightning.callbacks import BaseFinetuning
|
30 |
from utils.visualizer import Visualizer
|
31 |
+
from torchvision.transforms.functional import resize
|
32 |
|
33 |
import torch
|
34 |
import requests
|
|
|
57 |
|
58 |
return parsed_answer
|
59 |
|
60 |
+
|
61 |
+
def polygons_to_mask(image, prediction, fill_value=255):
|
62 |
+
"""
|
63 |
+
Converts polygons into a mask.
|
64 |
+
|
65 |
+
Parameters:
|
66 |
+
- image: A PIL Image instance whose size will be used for the mask.
|
67 |
+
- prediction: Dictionary containing 'polygons' and 'labels'.
|
68 |
+
'polygons' is a list where each element is a list of sub-polygons.
|
69 |
+
- fill_value: The pixel value used to fill the polygon areas (default 255 for a binary mask).
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
- A NumPy array representing the mask (same width and height as the input image).
|
73 |
+
"""
|
74 |
+
# Create a blank grayscale mask image with the same size as the original image.
|
75 |
+
mask = Image.new('L', image.size, 0)
|
76 |
+
draw = ImageDraw.Draw(mask)
|
77 |
+
|
78 |
+
# Iterate over each set of polygons
|
79 |
+
for polygons in prediction['polygons']:
|
80 |
+
# Each element in "polygons" can be a sub-polygon
|
81 |
+
for poly in polygons:
|
82 |
+
# Ensure the polygon is in the right shape and has at least 3 points.
|
83 |
+
poly_arr = np.array(poly).reshape(-1, 2)
|
84 |
+
if poly_arr.shape[0] < 3:
|
85 |
+
print('Skipping invalid polygon:', poly_arr)
|
86 |
+
continue
|
87 |
+
# Convert the polygon vertices into a list for drawing.
|
88 |
+
poly_list = poly_arr.reshape(-1).tolist()
|
89 |
+
# Draw the polygon on the mask with the fill_value.
|
90 |
+
draw.polygon(poly_list, fill=fill_value)
|
91 |
+
|
92 |
+
# Convert the PIL mask image to a NumPy array and return it.
|
93 |
+
return np.array(mask)
|
94 |
+
|
95 |
+
|
96 |
class Tracker:
|
97 |
def __init__(self, model, mean, std, S, stride, inference_iters, target_res, device='cuda'):
|
98 |
"""
|