Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import math | |
import unittest | |
from transformers import MptConfig, is_torch_available | |
from transformers.testing_utils import require_bitsandbytes, require_torch, require_torch_gpu, slow, torch_device | |
from ...generation.test_utils import GenerationTesterMixin | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
MPT_PRETRAINED_MODEL_ARCHIVE_LIST, | |
AutoTokenizer, | |
MptForCausalLM, | |
MptForQuestionAnswering, | |
MptForSequenceClassification, | |
MptForTokenClassification, | |
MptModel, | |
) | |
class MptModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=14, | |
seq_length=7, | |
is_training=True, | |
use_token_type_ids=False, | |
use_input_mask=True, | |
use_labels=True, | |
use_mc_token_ids=True, | |
vocab_size=99, | |
hidden_size=32, | |
num_hidden_layers=2, | |
num_attention_heads=4, | |
intermediate_size=37, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_dropout_prob=0.1, | |
max_position_embeddings=512, | |
type_vocab_size=16, | |
type_sequence_label_size=2, | |
initializer_range=0.02, | |
num_labels=3, | |
num_choices=4, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.seq_length = seq_length | |
self.is_training = is_training | |
self.use_token_type_ids = use_token_type_ids | |
self.use_input_mask = use_input_mask | |
self.use_labels = use_labels | |
self.use_mc_token_ids = use_mc_token_ids | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.intermediate_size = intermediate_size | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_dropout_prob = attention_dropout_prob | |
self.max_position_embeddings = max_position_embeddings | |
self.type_vocab_size = type_vocab_size | |
self.type_sequence_label_size = type_sequence_label_size | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.num_choices = num_choices | |
self.scope = None | |
self.bos_token_id = vocab_size - 1 | |
self.eos_token_id = vocab_size - 1 | |
self.pad_token_id = vocab_size - 1 | |
def get_large_model_config(self): | |
return MptConfig.from_pretrained("mosaicml/mpt-7b") | |
def prepare_config_and_inputs(self, gradient_checkpointing=False): | |
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
input_mask = None | |
if self.use_input_mask: | |
input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
sequence_labels = None | |
if self.use_labels: | |
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
config = self.get_config(gradient_checkpointing=gradient_checkpointing) | |
return (config, input_ids, input_mask, sequence_labels) | |
def get_config(self, gradient_checkpointing=False): | |
return MptConfig( | |
vocab_size=self.vocab_size, | |
seq_length=self.seq_length, | |
hidden_size=self.hidden_size, | |
n_layers=self.num_hidden_layers, | |
n_heads=self.num_attention_heads, | |
hidden_dropout=self.hidden_dropout_prob, | |
attention_dropout=self.attention_dropout_prob, | |
n_positions=self.max_position_embeddings, | |
type_vocab_size=self.type_vocab_size, | |
initializer_range=self.initializer_range, | |
use_cache=True, | |
bos_token_id=self.bos_token_id, | |
eos_token_id=self.eos_token_id, | |
pad_token_id=self.pad_token_id, | |
num_labels=self.num_labels, | |
gradient_checkpointing=gradient_checkpointing, | |
dtype="float32", | |
) | |
def create_and_check_mpt_model(self, config, input_ids, input_mask, *args): | |
model = MptModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids) | |
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
self.parent.assertEqual(len(result.past_key_values), config.n_layers) | |
def create_and_check_mpt_model_past(self, config, input_ids, input_mask, *args): | |
model = MptModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
# first forward pass | |
outputs = model(input_ids, attention_mask=torch.ones_like(input_ids), use_cache=True) | |
outputs_use_cache_conf = model(input_ids, attention_mask=torch.ones_like(input_ids)) | |
outputs_no_past = model(input_ids, use_cache=False, attention_mask=torch.ones_like(input_ids)) | |
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) | |
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) | |
past = outputs["past_key_values"] | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# append to next input_ids and token_type_ids | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
output_from_no_past = model(next_input_ids)["last_hidden_state"] | |
output_from_past = model(next_tokens, past_key_values=past)["last_hidden_state"] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_mpt_model_attention_mask_past(self, config, input_ids, input_mask, *args): | |
model = MptModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
# create attention mask | |
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) | |
half_seq_length = self.seq_length // 2 | |
attn_mask[:, half_seq_length:] = 0 | |
# first forward pass | |
output, past = model(input_ids, attention_mask=attn_mask).to_tuple() | |
# create hypothetical next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
# change a random masked slice from input_ids | |
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 | |
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) | |
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens | |
# append to next input_ids and attn_mask | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
attn_mask = torch.cat( | |
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], | |
dim=1, | |
) | |
# get two different outputs | |
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] | |
output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() | |
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_mpt_model_past_large_inputs(self, config, input_ids, input_mask, *args): | |
model = MptModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
# first forward pass | |
outputs = model( | |
input_ids, | |
attention_mask=input_mask, | |
use_cache=True, | |
) | |
past_key_values = outputs.past_key_values | |
# create hypothetical multiple next token and extent to next_input_ids | |
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) | |
# append to next input_ids and | |
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) | |
output_from_no_past = model( | |
next_input_ids, | |
attention_mask=next_attention_mask, | |
output_hidden_states=True, | |
) | |
hidden_states_from_no_past = output_from_no_past["hidden_states"][0] | |
output_from_past = model( | |
next_tokens, | |
attention_mask=next_attention_mask, | |
past_key_values=past_key_values, | |
output_hidden_states=True, | |
) | |
hidden_states_from_past = output_from_past["hidden_states"][0] | |
# select random slice | |
random_slice_idx = ids_tensor((1,), hidden_states_from_past.shape[-1]).item() | |
output_from_no_past_slice = hidden_states_from_no_past[:, -3:, random_slice_idx].detach() | |
output_from_past_slice = hidden_states_from_past[:, :, random_slice_idx].detach() | |
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) | |
# test that outputs are equal for slice | |
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
def create_and_check_lm_head_model(self, config, input_ids, input_mask, *args): | |
model = MptForCausalLM(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, labels=input_ids) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
def create_and_check_sequence_classification_model(self, config, input_ids, input_mask, *args): | |
config.num_labels = self.num_labels | |
model = MptForSequenceClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
def create_and_check_token_classification_model(self, config, input_ids, input_mask, *args): | |
model = MptForTokenClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_question_answering_model(self, config, input_ids, input_mask, *args): | |
model = MptForQuestionAnswering(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(input_ids, attention_mask=input_mask) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
def create_and_check_forward_and_backwards( | |
self, config, input_ids, input_mask, *args, gradient_checkpointing=False | |
): | |
model = MptForCausalLM(config) | |
model.to(torch_device) | |
if gradient_checkpointing: | |
model.gradient_checkpointing_enable() | |
result = model(input_ids, labels=input_ids) | |
self.parent.assertEqual(result.loss.shape, ()) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
result.loss.backward() | |
def create_and_check_mpt_weight_initialization(self, config, *args): | |
model = MptModel(config) | |
model_std = model.config.initializer_range / math.sqrt(2 * model.config.n_layers) | |
for key in model.state_dict().keys(): | |
if "c_proj" in key and "weight" in key: | |
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001) | |
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, input_ids, input_mask, sequence_labels = config_and_inputs | |
inputs_dict = {"input_ids": input_ids} | |
return config, inputs_dict | |
class MptConfigTester(ConfigTester): | |
def __init__(self, parent, config_class=None, has_text_modality=True, common_properties=None, **kwargs): | |
super().__init__(parent, config_class, has_text_modality, common_properties, **kwargs) | |
def test_attn_config_as_dict(self): | |
config = self.config_class(**self.inputs_dict, attn_config={"attn_impl": "flash", "softmax_scale": None}) | |
self.parent.assertTrue(config.attn_config.attn_impl == "flash") | |
self.parent.assertTrue(config.attn_config.softmax_scale is None) | |
def run_common_tests(self): | |
self.test_attn_config_as_dict() | |
return super().run_common_tests() | |
class MptModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = ( | |
( | |
MptModel, | |
MptForCausalLM, | |
MptForSequenceClassification, | |
MptForTokenClassification, | |
MptForQuestionAnswering, | |
) | |
if is_torch_available() | |
else () | |
) | |
all_generative_model_classes = (MptForCausalLM,) if is_torch_available() else () | |
fx_compatible = False | |
test_missing_keys = False | |
test_pruning = False | |
test_torchscript = False | |
test_head_masking = False | |
pipeline_model_mapping = ( | |
{ | |
"feature-extraction": MptModel, | |
"question-answering": MptForQuestionAnswering, | |
"text-classification": MptForSequenceClassification, | |
"text-generation": MptForCausalLM, | |
"token-classification": MptForTokenClassification, | |
"zero-shot": MptForSequenceClassification, | |
} | |
if is_torch_available() | |
else {} | |
) | |
def setUp(self): | |
self.model_tester = MptModelTester(self) | |
self.config_tester = MptConfigTester(self, config_class=MptConfig, n_embd=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_mpt_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_mpt_model(*config_and_inputs) | |
def test_mpt_model_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_mpt_model_past(*config_and_inputs) | |
def test_mpt_model_att_mask_past(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_mpt_model_attention_mask_past(*config_and_inputs) | |
def test_mpt_model_past_large_inputs(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_mpt_model_past_large_inputs(*config_and_inputs) | |
def test_mpt_lm_head_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_lm_head_model(*config_and_inputs) | |
def test_mpt_sequence_classification_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_sequence_classification_model(*config_and_inputs) | |
def test_mpt_token_classification_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_token_classification_model(*config_and_inputs) | |
def test_mpt_gradient_checkpointing(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) | |
def test_mpt_weight_initialization(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_mpt_weight_initialization(*config_and_inputs) | |
def test_model_weights_reload_no_missing_tied_weights(self): | |
pass | |
def test_model_from_pretrained(self): | |
for model_name in MPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = MptModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class MptIntegrationTests(unittest.TestCase): | |
def test_generation_8k(self): | |
model_id = "mosaicml/mpt-7b-8k" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
# Load in 4bit to fit the daily CI runner GPU RAM | |
model = MptForCausalLM.from_pretrained( | |
model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True | |
) | |
input_text = "Hello" | |
expected_output = 'Hello, I\'m a new user of the forum. I have a question about the "Safety"' | |
inputs = tokenizer(input_text, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=20) | |
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
self.assertEqual(decoded_output, expected_output) | |
def test_generation(self): | |
model_id = "mosaicml/mpt-7b" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
# Load in 4bit to fit the daily CI runner GPU RAM | |
model = MptForCausalLM.from_pretrained( | |
model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True | |
) | |
input_text = "Hello" | |
expected_output = ( | |
"Hello and welcome to the first day of the new release countdown for the month of May!\nToday" | |
) | |
inputs = tokenizer(input_text, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=20) | |
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
self.assertEqual(decoded_output, expected_output) | |
def test_generation_batched(self): | |
model_id = "mosaicml/mpt-7b" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
# Load in 4bit to fit the daily CI runner GPU RAM | |
model = MptForCausalLM.from_pretrained( | |
model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True | |
) | |
input_texts = ["Hello my name is", "Today I am going at the gym and"] | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
tokenizer.padding_side = "left" | |
inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(torch_device) | |
expected_output = [ | |
"Hello my name is Tiffany and I am a mother of two beautiful children. I have been a nanny for over", | |
"Today I am going at the gym and then I am going to go to the grocery store and get some food. I am going to make", | |
] | |
outputs = model.generate(**inputs, max_new_tokens=20) | |
decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
for i, predicted_output in enumerate(decoded_outputs): | |
self.assertEqual(predicted_output, expected_output[i]) | |
def test_model_logits(self): | |
model_id = "mosaicml/mpt-7b" | |
# Load in 4bit to fit the daily CI runner GPU RAM | |
model = MptForCausalLM.from_pretrained( | |
model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True | |
) | |
dummy_input = torch.LongTensor([[1, 2, 3, 4, 5]]).to(torch_device) | |
outputs = model(dummy_input, output_hidden_states=True) | |
expected_slice = torch.Tensor([-0.2539, -0.2178, -0.1953]).to(torch_device, torch.bfloat16) | |
predicted_slice = outputs.hidden_states[-1][0, 0, :3] | |
self.assertTrue(torch.allclose(expected_slice, predicted_slice, atol=1e-3, rtol=1e-3)) | |