Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Testing suite for the PyTorch Pvt model. """ | |
import inspect | |
import unittest | |
from transformers import is_torch_available, is_vision_available | |
from transformers.models.auto import get_values | |
from transformers.testing_utils import ( | |
require_accelerate, | |
require_torch, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from ...test_configuration_common import ConfigTester | |
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor | |
from ...test_pipeline_mixin import PipelineTesterMixin | |
if is_torch_available(): | |
import torch | |
from transformers import MODEL_MAPPING, PvtConfig, PvtForImageClassification, PvtImageProcessor, PvtModel | |
from transformers.models.pvt.modeling_pvt import PVT_PRETRAINED_MODEL_ARCHIVE_LIST | |
if is_vision_available(): | |
from PIL import Image | |
class PvtConfigTester(ConfigTester): | |
def run_common_tests(self): | |
config = self.config_class(**self.inputs_dict) | |
self.parent.assertTrue(hasattr(config, "hidden_sizes")) | |
self.parent.assertTrue(hasattr(config, "num_encoder_blocks")) | |
class PvtModelTester: | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
image_size=64, | |
num_channels=3, | |
num_encoder_blocks=4, | |
depths=[2, 2, 2, 2], | |
sr_ratios=[8, 4, 2, 1], | |
hidden_sizes=[16, 32, 64, 128], | |
downsampling_rates=[1, 4, 8, 16], | |
num_attention_heads=[1, 2, 4, 8], | |
is_training=True, | |
use_labels=True, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
initializer_range=0.02, | |
num_labels=3, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.image_size = image_size | |
self.num_channels = num_channels | |
self.num_encoder_blocks = num_encoder_blocks | |
self.sr_ratios = sr_ratios | |
self.depths = depths | |
self.hidden_sizes = hidden_sizes | |
self.downsampling_rates = downsampling_rates | |
self.num_attention_heads = num_attention_heads | |
self.is_training = is_training | |
self.use_labels = use_labels | |
self.hidden_act = hidden_act | |
self.hidden_dropout_prob = hidden_dropout_prob | |
self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
self.initializer_range = initializer_range | |
self.num_labels = num_labels | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) | |
labels = None | |
if self.use_labels: | |
labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) | |
config = self.get_config() | |
return config, pixel_values, labels | |
def get_config(self): | |
return PvtConfig( | |
image_size=self.image_size, | |
num_channels=self.num_channels, | |
num_encoder_blocks=self.num_encoder_blocks, | |
depths=self.depths, | |
hidden_sizes=self.hidden_sizes, | |
num_attention_heads=self.num_attention_heads, | |
hidden_act=self.hidden_act, | |
hidden_dropout_prob=self.hidden_dropout_prob, | |
attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
initializer_range=self.initializer_range, | |
) | |
def create_and_check_model(self, config, pixel_values, labels): | |
model = PvtModel(config=config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values) | |
self.parent.assertIsNotNone(result.last_hidden_state) | |
def create_and_check_for_image_classification(self, config, pixel_values, labels): | |
config.num_labels = self.type_sequence_label_size | |
model = PvtForImageClassification(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(pixel_values, labels=labels) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) | |
# test greyscale images | |
config.num_channels = 1 | |
model = PvtForImageClassification(config) | |
model.to(torch_device) | |
model.eval() | |
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) | |
result = model(pixel_values) | |
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
config, pixel_values, labels = config_and_inputs | |
inputs_dict = {"pixel_values": pixel_values} | |
return config, inputs_dict | |
# We will verify our results on an image of cute cats | |
def prepare_img(): | |
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") | |
return image | |
class PvtModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
all_model_classes = (PvtModel, PvtForImageClassification) if is_torch_available() else () | |
pipeline_model_mapping = ( | |
{"feature-extraction": PvtModel, "image-classification": PvtForImageClassification} | |
if is_torch_available() | |
else {} | |
) | |
test_head_masking = False | |
test_pruning = False | |
test_resize_embeddings = False | |
test_torchscript = False | |
has_attentions = False | |
def setUp(self): | |
self.model_tester = PvtModelTester(self) | |
self.config_tester = PvtConfigTester(self, config_class=PvtConfig) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_model(*config_and_inputs) | |
def test_inputs_embeds(self): | |
pass | |
def test_model_common_attributes(self): | |
pass | |
def test_initialization(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config=config) | |
for name, param in model.named_parameters(): | |
self.assertTrue( | |
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, | |
msg=f"Parameter {name} of model {model_class} seems not properly initialized", | |
) | |
def test_hidden_states_output(self): | |
def check_hidden_states_output(inputs_dict, config, model_class): | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**self._prepare_for_class(inputs_dict, model_class)) | |
hidden_states = outputs.hidden_states | |
expected_num_layers = sum(self.model_tester.depths) + 1 | |
self.assertEqual(len(hidden_states), expected_num_layers) | |
# verify the first hidden states (first block) | |
self.assertListEqual( | |
list(hidden_states[0].shape[-3:]), | |
[ | |
self.model_tester.batch_size, | |
(self.model_tester.image_size // 4) ** 2, | |
self.model_tester.image_size // 4, | |
], | |
) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
# check that output_hidden_states also work using config | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(inputs_dict, config, model_class) | |
def test_training(self): | |
if not self.model_tester.is_training: | |
return | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
for model_class in self.all_model_classes: | |
if model_class in get_values(MODEL_MAPPING): | |
continue | |
model = model_class(config) | |
model.to(torch_device) | |
model.train() | |
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
loss = model(**inputs).loss | |
loss.backward() | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_model_from_pretrained(self): | |
for model_name in PVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
model = PvtModel.from_pretrained(model_name) | |
self.assertIsNotNone(model) | |
class PvtModelIntegrationTest(unittest.TestCase): | |
def test_inference_image_classification(self): | |
# only resize + normalize | |
image_processor = PvtImageProcessor.from_pretrained("Zetatech/pvt-tiny-224") | |
model = PvtForImageClassification.from_pretrained("Zetatech/pvt-tiny-224").to(torch_device).eval() | |
image = prepare_img() | |
encoded_inputs = image_processor(images=image, return_tensors="pt") | |
pixel_values = encoded_inputs.pixel_values.to(torch_device) | |
with torch.no_grad(): | |
outputs = model(pixel_values) | |
expected_shape = torch.Size((1, model.config.num_labels)) | |
self.assertEqual(outputs.logits.shape, expected_shape) | |
expected_slice = torch.tensor([-1.4192, -1.9158, -0.9702]).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)) | |
def test_inference_model(self): | |
model = PvtModel.from_pretrained("Zetatech/pvt-tiny-224").to(torch_device).eval() | |
image_processor = PvtImageProcessor.from_pretrained("Zetatech/pvt-tiny-224") | |
image = prepare_img() | |
inputs = image_processor(images=image, return_tensors="pt") | |
pixel_values = inputs.pixel_values.to(torch_device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(pixel_values) | |
# verify the logits | |
expected_shape = torch.Size((1, 50, 512)) | |
self.assertEqual(outputs.last_hidden_state.shape, expected_shape) | |
expected_slice = torch.tensor( | |
[[-0.3086, 1.0402, 1.1816], [-0.2880, 0.5781, 0.6124], [0.1480, 0.6129, -0.0590]] | |
).to(torch_device) | |
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4)) | |
def test_inference_fp16(self): | |
r""" | |
A small test to make sure that inference work in half precision without any problem. | |
""" | |
model = PvtForImageClassification.from_pretrained("Zetatech/pvt-tiny-224", torch_dtype=torch.float16) | |
model.to(torch_device) | |
image_processor = PvtImageProcessor(size=224) | |
image = prepare_img() | |
inputs = image_processor(images=image, return_tensors="pt") | |
pixel_values = inputs.pixel_values.to(torch_device, dtype=torch.float16) | |
# forward pass to make sure inference works in fp16 | |
with torch.no_grad(): | |
_ = model(pixel_values) | |