Spaces:
Running
Running
File size: 16,147 Bytes
baf4fd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import streamlit as st
import pandas as pd
import sqlite3
import os
from datetime import datetime
import time
from scraper import LinkedInScraper
from email_gen import EmailGenerator
# Configure Streamlit page
st.set_page_config(
page_title="Cold Email Outreach Assistant",
page_icon="π§",
layout="wide"
)
# Initialize session state
if 'processed_data' not in st.session_state:
st.session_state.processed_data = None
if 'email_generator' not in st.session_state:
st.session_state.email_generator = None
def init_database():
"""Initialize SQLite database for caching"""
conn = sqlite3.connect('leads.db')
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS scraped_data (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT,
email TEXT,
company TEXT,
linkedin_url TEXT,
scraped_info TEXT,
generated_subject TEXT,
generated_email TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
''')
conn.commit()
conn.close()
def save_to_database(data):
"""Save processed data to database"""
conn = sqlite3.connect('leads.db')
cursor = conn.cursor()
for _, row in data.iterrows():
cursor.execute('''
INSERT OR REPLACE INTO scraped_data
(name, email, company, linkedin_url, scraped_info, generated_subject, generated_email)
VALUES (?, ?, ?, ?, ?, ?, ?)
''', (
row['name'], row['email'], row['company'], row['linkedin_url'],
row.get('scraped_info', ''), row.get('generated_subject', ''),
row.get('generated_email', '')
))
conn.commit()
conn.close()
def load_from_database():
"""Load data from database"""
conn = sqlite3.connect('leads.db')
df = pd.read_sql_query('SELECT * FROM scraped_data ORDER BY created_at DESC', conn)
conn.close()
return df
def main():
st.title("π§ Cold Email Outreach Assistant")
st.markdown("Upload your leads CSV and generate personalized cold emails using AI")
# Initialize database
init_database()
# Sidebar for configuration
with st.sidebar:
st.header("βοΈ Configuration")
# Model configuration
st.subheader("AI Model Settings")
model_option = st.selectbox(
"Model Type",
["Download Vicuna-7B (Recommended)", "Use Custom Model Path"]
)
if model_option == "Use Custom Model Path":
custom_model_path = st.text_input("Custom Model Path", "")
else:
custom_model_path = None
# Email generation settings
st.subheader("π§ Email Generation")
tone = st.selectbox(
"Email Tone",
["Professional", "Friendly", "Direct", "Authoritative"],
index=0,
help="Choose the tone for generated emails"
)
temperature = st.slider(
"Creativity Level",
min_value=0.3,
max_value=1.0,
value=0.7,
step=0.1,
help="Lower = more conservative, Higher = more creative"
)
generate_variations = st.checkbox(
"Generate Multiple Variations",
value=False,
help="Generate 3 different email variations per lead"
)
# Scraping configuration
st.subheader("π Scraping Settings")
scrape_timeout = st.slider("Scrape Timeout (seconds)", 5, 30, 10)
use_selenium = st.checkbox("Use Selenium (slower but more reliable)", value=False)
# Main content area
tab1, tab2, tab3 = st.tabs(["π€ Upload & Process", "π Results", "π History"])
with tab1:
st.header("Upload Your Leads CSV")
# File upload
uploaded_file = st.file_uploader(
"Choose a CSV file",
type="csv",
help="CSV should contain columns: name, email, company, linkedin_url"
)
if uploaded_file is not None:
try:
# Read CSV
df = pd.read_csv(uploaded_file)
# Validate columns
required_columns = ['name', 'email', 'company', 'linkedin_url']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
st.error(f"Missing required columns: {', '.join(missing_columns)}")
st.info("Required columns: name, email, company, linkedin_url")
else:
st.success(f"β
CSV loaded successfully! Found {len(df)} leads")
st.dataframe(df.head())
# Process data button
if st.button("π Start Processing", type="primary"):
process_leads(df, scrape_timeout, use_selenium, custom_model_path, tone, temperature, generate_variations)
except Exception as e:
st.error(f"Error reading CSV: {str(e)}")
with tab2:
st.header("Processing Results")
if st.session_state.processed_data is not None:
df = st.session_state.processed_data
# Display results
st.success(f"β
Processed {len(df)} leads successfully!")
# Show detailed results
for idx, row in df.iterrows():
with st.expander(f"π {row['name']} - {row['company']} {'π―' if row.get('tone_used') else ''}"):
col1, col2, col3 = st.columns([2, 3, 1])
with col1:
st.subheader("π Scraped Information")
st.text_area("Company Info", row.get('scraped_info', 'No info scraped'), height=100, key=f"info_{idx}")
# Show generation settings if available
if row.get('tone_used'):
st.write(f"**Tone:** {row.get('tone_used', 'N/A')}")
st.write(f"**Temperature:** {row.get('temperature_used', 'N/A')}")
with col2:
st.subheader("π§ Generated Email")
subject = row.get('generated_subject', 'No subject generated')
email_body = row.get('generated_email', 'No email generated')
st.text_area("Subject", subject, height=50, key=f"subject_{idx}")
st.text_area("Email Body", email_body, height=250, key=f"email_{idx}")
with col3:
st.subheader("π Quality")
if subject and email_body:
subject_len = len(subject)
# Get main body without variations
main_body = email_body.split('--- VARIATIONS ---')[0].strip()
body_words = len(main_body.split())
# Quality indicators
if 15 <= subject_len <= 65:
st.success(f"β
Subject: {subject_len} chars")
else:
st.warning(f"β οΈ Subject: {subject_len} chars")
if 25 <= body_words <= 100:
st.success(f"β
Body: {body_words} words")
else:
st.warning(f"β οΈ Body: {body_words} words")
# Check for placeholders
if '[Your Name]' in email_body or '{' in email_body:
st.error("β Contains placeholders")
else:
st.success("β
No placeholders")
# Check for personalization
if row['name'] in main_body and row['company'] in main_body:
st.success("β
Well personalized")
else:
st.warning("β οΈ Low personalization")
# Check for CTA
cta_words = ['call', 'conversation', 'chat', 'discuss', 'talk', 'meeting']
if any(word in main_body.lower() for word in cta_words):
st.success("β
Has call-to-action")
else:
st.warning("β οΈ Weak call-to-action")
# Overall quality score
quality_score = 0
if 15 <= subject_len <= 65: quality_score += 20
if 25 <= body_words <= 100: quality_score += 25
if '[Your Name]' not in email_body: quality_score += 25
if row['name'] in main_body and row['company'] in main_body: quality_score += 20
if any(word in main_body.lower() for word in cta_words): quality_score += 10
if quality_score >= 80:
st.success(f"π Overall: {quality_score}% - Ready to send!")
elif quality_score >= 60:
st.warning(f"π Overall: {quality_score}% - Needs polish")
else:
st.error(f"π§ Overall: {quality_score}% - Needs work")
# Quick copy button
email_text = f"Subject: {subject}\n\n{email_body}"
st.text_area("Copy Email", email_text, height=100, key=f"copy_{idx}")
# Export functionality
if st.button("π₯ Export to CSV"):
csv_data = df.to_csv(index=False)
st.download_button(
label="β¬οΈ Download CSV",
data=csv_data,
file_name=f"cold_emails_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv"
)
else:
st.info("π Upload and process a CSV file to see results here")
with tab3:
st.header("Processing History")
# Load and display historical data
try:
history_df = load_from_database()
if not history_df.empty:
st.dataframe(history_df)
# Export history
if st.button("π₯ Export History"):
csv_data = history_df.to_csv(index=False)
st.download_button(
label="β¬οΈ Download History CSV",
data=csv_data,
file_name=f"email_history_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv"
)
else:
st.info("No historical data found")
except Exception as e:
st.error(f"Error loading history: {str(e)}")
def process_leads(df, scrape_timeout, use_selenium, custom_model_path, tone, temperature, generate_variations):
"""Process the uploaded leads with enhanced email generation"""
progress_bar = st.progress(0)
status_text = st.empty()
try:
# Initialize components
status_text.text("π§ Initializing scraper...")
scraper = LinkedInScraper(timeout=scrape_timeout, use_selenium=use_selenium)
status_text.text("π€ Initializing AI model...")
if st.session_state.email_generator is None:
st.session_state.email_generator = EmailGenerator(custom_model_path)
email_gen = st.session_state.email_generator
# Process each lead
processed_data = []
total_leads = len(df)
for idx, row in df.iterrows():
status_text.text(f"π Processing {row['name']} ({idx + 1}/{total_leads})")
# Scrape information
scraped_info = scraper.scrape_linkedin_or_company(
row['linkedin_url'],
row['company']
)
# Generate email with new parameters
status_text.text(f"βοΈ Generating email for {row['name']} ({tone} tone)...")
if generate_variations:
# Generate multiple variations
variations = email_gen.generate_multiple_variations(
row['name'],
row['company'],
scraped_info,
num_variations=3,
tone=tone
)
# Use the first variation as primary
subject = variations[0]['subject']
email_body = variations[0]['email_body']
# Store all variations in a formatted way
variations_text = "\n\n--- VARIATIONS ---\n"
for i, var in enumerate(variations, 1):
variations_text += f"\nVariation {i} ({var['tone']}):\n"
variations_text += f"Subject: {var['subject']}\n"
variations_text += f"Body: {var['email_body']}\n"
email_body += variations_text
else:
# Generate single email with specified parameters
subject, email_body = email_gen.generate_email(
row['name'],
row['company'],
scraped_info,
tone=tone,
temperature=temperature
)
# Add to processed data
processed_data.append({
'name': row['name'],
'email': row['email'],
'company': row['company'],
'linkedin_url': row['linkedin_url'],
'scraped_info': scraped_info,
'generated_subject': subject,
'generated_email': email_body,
'tone_used': tone,
'temperature_used': temperature
})
# Update progress
progress_bar.progress((idx + 1) / total_leads)
# Convert to DataFrame and save
result_df = pd.DataFrame(processed_data)
st.session_state.processed_data = result_df
# Save to database
save_to_database(result_df)
status_text.text("β
Processing completed!")
st.success("π All leads processed successfully!")
# Show quality metrics
avg_subject_length = result_df['generated_subject'].str.len().mean()
avg_body_length = result_df['generated_email'].str.split().str.len().mean()
st.info(f"π Quality Metrics: Avg subject length: {avg_subject_length:.0f} chars, Avg body length: {avg_body_length:.0f} words")
except Exception as e:
st.error(f"β Error during processing: {str(e)}")
status_text.text("β Processing failed")
if __name__ == "__main__":
main()
|