Spaces:
Running
Running
File size: 45,337 Bytes
0c6a8e1 0faeeba 0c6a8e1 97bb0e9 0c6a8e1 8d5efde 0c6a8e1 8d5efde 0c6a8e1 8dec461 0c6a8e1 97bb0e9 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 715a75e 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 0faeeba 0c6a8e1 0faeeba 0c6a8e1 1e69798 0c6a8e1 c04507d 0c6a8e1 8d5efde 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 97bb0e9 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 1e69798 0c6a8e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 |
import gradio as gr
import json
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import os
import traceback
from datetime import datetime
from packaging import version
# Color scheme for charts
COLORS = px.colors.qualitative.Plotly
# Line colors for radar charts
line_colors = [
"#EE4266",
"#00a6ed",
"#ECA72C",
"#B42318",
"#3CBBB1",
]
# Fill colors for radar charts
fill_colors = [
"rgba(238,66,102,0.05)",
"rgba(0,166,237,0.05)",
"rgba(236,167,44,0.05)",
"rgba(180,35,24,0.05)",
"rgba(60,187,177,0.05)",
]
# Language definitions
LANGUAGES = {"English": {
"clear_charts": "Clear Charts",
"lang_selector_label": "Language / Π―Π·ΡΠΊ",
"description": "This leaderboard allows comparing RAG systems based on generative and retrieval metrics across different question types (simple, comparison, multi-hop, conditional, etc.). <li>Questions are automatically generated from news sources.</li><li>The question dataset is updated regularly, and metrics for open models are recalculated.</li><li>User submissions use the latest calculated metrics for them.</li><li>To recalculate a previously submitted configuration with the latest data version, use the submit_id received during the initial submission via the client (see instructions below).</li>",
"version_info_template": "## Version {} β {} questions, generated from news sources β {}",
"gen_metrics_title": "### Generation Metrics",
"ret_metrics_title": "### Retrieval Metrics",
"overall_tab_title": "Overall Table",
"no_data_message": "No data available. Please submit some results.",
"by_type_tab_title": "By Question Type",
"category_display_names": {
"simple": "Simple Questions",
"set": "Set-based",
"mh": "Multi-hop",
"cond": "Conditional",
"comp": "Comparison"
},
"no_data_category_template": "No data available for {} category.",
"category_performance_template": "#### Performance on {}",
"citation_title": "### Citation",
"citation_description": """
```
@misc{chernogorskii2025dragondynamicragbenchmark,
title={DRAGON: Dynamic RAG Benchmark On News},
author={Fedor Chernogorskii and Sergei Averkiev and Liliya Kudraleeva and Zaven Martirosian and Maria Tikhonova and Valentin Malykh and Alena Fenogenova},
year={2025},
eprint={2507.05713},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2507.05713},
}
```
""",
"version_selector_title": "### Version Selection",
"only_actual_label": "Only actual versions",
"only_actual_info": "Start counting from the current dataset version",
"n_versions_label": "Take n last versions",
"n_versions_info": "Number of versions to calculate metrics for",
"filter_button": "Apply Filter",
"info_text": "Click on models in the table to add them to the charts",
"footer_text": "<footer>DRAGON. Dynamic RAG Benchmark Leaderboard</footer>",
"radar_gen_title": "Performance on Generation Tasks",
"radar_ret_title": "Performance on Retrieval Tasks"
},
"Π ΡΡΡΠΊΠΈΠΉ": {
"clear_charts": "ΠΡΠΈΡΡΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ",
# "lang_selector_label": "Language",
"description": "ΠΠ° ΡΡΠΎΠΌ Π»ΠΈΠ΄Π΅ΡΠ±ΠΎΡΠ΄Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠ°Π²Π½ΠΈΡΡ RAG ΡΠΈΡΡΠ΅ΠΌΡ Π² ΡΠ°Π·ΡΠ΅Π·Π΅ Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΡΡ
ΠΈ ΠΏΠΎΠΈΡΠΊΠΎΠ²ΡΡ
ΠΌΠ΅ΡΡΠΈΠΊ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΏΠΎ Π²ΠΎΠΏΡΠΎΡΠ°ΠΌ ΡΠ°Π·Π½ΠΎΠ³ΠΎ ΡΠΈΠΏΠ° (ΠΏΡΠΎΡΡΡΠ΅ Π²ΠΎΠΏΡΠΎΡΡ, ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, multi-hop, ΡΡΠ»ΠΎΠ²Π½ΡΠ΅ ΠΈ Π΄Ρ.). <li>ΠΠΎΠΏΡΠΎΡΡ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΠΊΠΈ Π³Π΅Π½Π΅ΡΠΈΡΡΡΡΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π½ΠΎΠ²ΠΎΡΡΠ½ΡΡ
ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ².</li><li>ΠΠ±Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ Π΄Π°ΡΠ°ΡΠ΅ΡΠ° Ρ Π²ΠΎΠΏΡΠΎΡΠ°ΠΌΠΈ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ ΡΠ΅Π³ΡΠ»ΡΡΠ½ΠΎ, ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΏΠ΅ΡΠ΅ΡΡΠΈΡΡΠ²Π°ΡΡΡΡ Π²ΡΠ΅ ΠΌΠ΅ΡΡΠΈΠΊΠΈ Π΄Π»Ρ ΠΎΡΠΊΡΡΡΡΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ.</li><li>ΠΠ»Ρ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΡΡΠΊΠΈΡ
ΡΠ°Π±ΠΌΠΈΡΠΎΠ² ΡΡΠΈΡΡΠ²Π°ΡΡΡΡ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ ΠΏΠΎΡΡΠΈΡΠ°Π½Π½ΡΠ΅ Π΄Π»Ρ Π½ΠΈΡ
ΠΌΠ΅ΡΡΠΈΠΊΠΈ.</li><li>Π§ΡΠΎΠ±Ρ ΠΏΠΎΡΡΠΈΡΠ°ΡΡ ΡΠ°Π½Π΅Π΅ ΠΎΡΠΏΡΠ°Π²Π»Π΅Π½Π½ΡΡ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΡ Π½Π° ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅ΠΉ Π²Π΅ΡΡΠΈΠΈ Π΄Π°Π½Π½ΡΡ
, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ submit_id, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΠΏΡΠΈ ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΎΡΠΏΡΠ°Π²ΠΊΠ΅ ΡΠ΅ΡΠ΅Π· ΠΊΠ»ΠΈΠ΅Π½Ρ (ΡΠΌ. ΠΈΠ½ΡΡΡΡΠΊΡΠΈΡ Π½ΠΈΠΆΠ΅).</li>",
"version_info_template": "## ΠΠ΅ΡΡΠΈΡ {} β {} Π²ΠΎΠΏΡΠΎΡΠΎΠ², ΡΠ³Π΅Π½Π΅ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠΎ Π½ΠΎΠ²ΠΎΡΡΠ½ΡΠΌ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠ°ΠΌ β {}",
"gen_metrics_title": "### ΠΠ΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΡΠ΅ ΠΌΠ΅ΡΡΠΈΠΊΠΈ",
"ret_metrics_title": "### ΠΠ΅ΡΡΠΈΠΊΠΈ ΠΏΠΎΠΈΡΠΊΠ°",
"overall_tab_title": "ΠΠ±ΡΠ°Ρ ΡΠ°Π±Π»ΠΈΡΠ°",
"no_data_message": "ΠΠ΅Ρ Π΄Π°Π½Π½ΡΡ
. ΠΠΎΠΆΠ°Π»ΡΠΉΡΡΠ°, ΠΎΡΠΏΡΠ°Π²ΡΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ.",
"by_type_tab_title": "ΠΠΎ ΡΠΈΠΏΠ°ΠΌ Π²ΠΎΠΏΡΠΎΡΠΎΠ²",
"category_display_names": {
"simple": "Simple",
"set": "Set",
"mh": "Multi-hop",
"cond": "Conditional",
"comp": "Comparison"
},
"no_data_category_template": "ΠΠ΅Ρ Π΄Π°Π½Π½ΡΡ
Π΄Π»Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ {}.",
"category_performance_template": "#### ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π½Π° {}",
"citation_title": "### Π¦ΠΈΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅",
"citation_description": """
```
@article{dynamic-rag-benchmark,
title={Dynamic RAG Benchmark},
author={RAG Benchmark Team},
journal={arXiv preprint},
year={2025},
url={https://github.com/rag-benchmark}
}
```
Π¨Π°Π±Π»ΠΎΠ½ Π΄Π»Ρ ΡΠΈΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π°ΡΠ΅Π³ΠΎ Π±Π΅Π½ΡΠ°.
""",
"version_selector_title": "### ΠΡΠ±ΠΎΡ Π²Π΅ΡΡΠΈΠΉ",
"only_actual_label": "Π’ΠΎΠ»ΡΠΊΠΎ Π°ΠΊΡΡΠ°Π»ΡΠ½ΡΠ΅ Π²Π΅ΡΡΠΈΠΈ",
"only_actual_info": "Π‘ΡΠΈΡΠ°ΡΡ, Π½Π°ΡΠΈΠ½Π°Ρ Ρ Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π²Π΅ΡΡΠΈΠΈ Π΄Π°ΡΠ°ΡΠ΅ΡΠ°",
"n_versions_label": "ΠΠ·ΡΡΡ n ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΡ
Π²Π΅ΡΡΠΈΠΉ",
"n_versions_info": "ΠΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π²Π΅ΡΡΠΈΠΉ Π΄Π»Ρ ΠΏΠΎΠ΄ΡΡΠ΅ΡΠ° ΠΌΠ΅ΡΡΠΈΠΊ",
"filter_button": "ΠΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠΈΠ»ΡΡΡ",
"info_text": "ΠΠ»ΠΈΠΊΠ°ΠΉΡΠ΅ Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ Π² ΡΠ°Π±Π»ΠΈΡΠ΅, ΡΡΠΎΠ±Ρ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ ΠΈΡ
Π² Π³ΡΠ°ΡΠΈΠΊΠΈ",
"footer_text": "<footer>DRAGON. Dynamic RAG Benchmark Leaderboard</footer>",
"radar_gen_title": "ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π½Π° ΠΠ΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΡΡ
ΠΠ°Π΄Π°Π½ΠΈΡΡ
",
"radar_ret_title": "ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π½Π° ΠΠΎΠΈΡΠΊΠΎΠ²ΡΡ
ΠΠ°Π΄Π°Π½ΠΈΡΡ
"
}
}
DEFAULT_LANG = "English"
# Define the question categories
QUESTION_CATEGORIES = ["simple", "set", "mh", "cond", "comp"]
METRIC_TYPES = ["retrieval", "generation"]
def load_results():
"""Load results from the results.json file."""
try:
# Get the directory of the current script
script_dir = os.path.dirname(os.path.abspath(__file__))
# Build the path to results.json
results_path = os.path.join(script_dir, 'results.json')
print(f"Loading results from: {results_path}")
with open(results_path, 'r', encoding='utf-8') as f:
results = json.load(f)
print(f"Successfully loaded results with {len(results.get('items', {}))} version(s)")
return results
except FileNotFoundError:
# Return empty structure if file doesn't exist
print(f"Results file not found, creating empty structure")
return {"items": {}, "last_version": "1.0", "n_questions": "0"}
except Exception as e:
print(f"Error loading results: {e}")
print(traceback.format_exc())
return {"items": {}, "last_version": "1.0", "n_questions": "0"}
def filter_and_process_results(results, n_versions, only_actual_versions):
"""Filter results by version and process them for display."""
if not results or "items" not in results:
return pd.DataFrame(), [], [], []
all_items = results["items"]
# Get all versions and sort them
all_versions_sorted = sorted([version.parse(v_str) for v_str in all_items.keys()], reverse=True)
# Filter versions to consider based on n_versions slider
versions_to_consider = all_versions_sorted[:n_versions]
versions_to_consider_str = {str(v) for v in versions_to_consider}
rows = []
for version_str, version_items in all_items.items():
if version_str not in versions_to_consider_str:
continue
for guid, item in version_items.items():
config = item.get("config", {})
model_name = item.get("model_name", "N/A")
metrics = item.get("metrics", {})
judge_metrics = metrics.get("judge", {})
row = {
'Model': f"{model_name} ({guid[:6]})",
'Embeddings': config.get('embedding_model', 'N/A'),
'Top k': config.get('retrieval_config', {}).get('top_k', 'N/A'),
# 'Judge': round(judge_metrics.get("judge_total_score", 0.0) / 2, 4),
'Version': version_str,
'Last Updated': item.get("timestamp", ""),
'guid': guid
}
if row['Last Updated']:
try:
dt = datetime.fromisoformat(row['Last Updated'].replace('Z', '+00:00'))
row['Last Updated'] = dt.strftime("%Y-%m-%d")
except (ValueError, TypeError):
pass
category_sums = {mtype: 0.0 for mtype in METRIC_TYPES}
category_counts = {mtype: 0 for mtype in METRIC_TYPES}
for category in QUESTION_CATEGORIES:
if category in metrics:
for metric_type in METRIC_TYPES:
if metric_type in metrics[category]:
metric_values = metrics[category][metric_type]
if metric_values and len(metric_values) > 0:
avg_value = sum(metric_values.values()) / len(metric_values)
col_name = f"{category}_{metric_type}"
row[col_name] = round(avg_value, 4)
category_sums[metric_type] += avg_value
category_counts[metric_type] += 1
for metric_type in METRIC_TYPES:
if category_counts[metric_type] > 0:
avg = category_sums[metric_type] / category_counts[metric_type]
row[f"{metric_type}_avg"] = round(avg, 4)
rows.append(row)
df = pd.DataFrame(rows)
# Get lists of metrics for each category
category_metrics = []
if not df.empty:
for category in QUESTION_CATEGORIES:
metrics_list = []
for metric_type in METRIC_TYPES:
col_name = f"{category}_{metric_type}"
if col_name in df.columns:
metrics_list.append(col_name)
if metrics_list:
category_metrics.append((category, metrics_list))
# Define retrieval and generation columns for radar charts
retrieval_metrics = []
generation_metrics = []
if not df.empty:
retrieval_metrics = [f"{category}_retrieval" for category, _ in category_metrics if f"{category}_retrieval" in df.columns]
generation_metrics = [f"{category}_generation" for category, _ in category_metrics if f"{category}_generation" in df.columns]
return df, retrieval_metrics, generation_metrics, category_metrics
def create_radar_chart(df, selected_models, metrics, title, name_col="Model"):
"""Create a radar chart for the selected models and metrics."""
if not metrics or len(selected_models) == 0:
# Return empty figure if no metrics or models selected
fig = go.Figure()
fig.update_layout(
title=title,
title_font_size=16,
height=400,
width=500,
margin=dict(l=30, r=30, t=50, b=30)
)
return fig
# Filter dataframe for selected models
filtered_df = df[df['Model'].isin(selected_models)]
if filtered_df.empty:
# Return empty figure if no data
fig = go.Figure()
fig.update_layout(
title=title,
title_font_size=16,
height=400,
width=500,
margin=dict(l=30, r=30, t=50, b=30)
)
return fig
# Limit to top 5 models for better visualization (similar to inspiration file)
if len(filtered_df) > 5:
filtered_df = filtered_df.head(5)
# Prepare data for radar chart
categories = [m.split('_', 1)[0] for m in metrics] # Get category name (simple, set, etc.)
fig = go.Figure()
# Process in reverse order to match inspiration file
for i, (_, row) in enumerate(filtered_df.iterrows()):
values = [row[m] for m in metrics]
# Close the loop for radar chart
values.append(values[0])
categories_loop = categories + [categories[0]]
fig.add_trace(go.Scatterpolar(
name=row[name_col],
r=values,
theta=categories_loop,
showlegend=True,
mode="lines",
line=dict(width=2, color=line_colors[i % len(line_colors)]),
fill="toself",
fillcolor=fill_colors[i % len(fill_colors)]
))
fig.update_layout(
font=dict(size=13, color="black"),
template="plotly_white",
polar=dict(
radialaxis=dict(
visible=True,
gridcolor="black",
linecolor="rgba(0,0,0,0)",
gridwidth=1,
showticklabels=False,
ticks="",
range=[0, 1] # Ensure consistent range for scores
),
angularaxis=dict(
gridcolor="black",
gridwidth=1.5,
linecolor="rgba(0,0,0,0)"
),
),
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.35,
xanchor="center",
x=0.4,
itemwidth=30,
font=dict(size=13),
entrywidth=0.6,
entrywidthmode="fraction",
),
margin=dict(l=0, r=16, t=30, b=30),
autosize=True,
)
return fig
def create_summary_df(df, retrieval_metrics, generation_metrics):
"""Create a summary dataframe with averaged metrics for display."""
if df.empty:
return pd.DataFrame()
summary_df = df.copy()
# Add retrieval average
if retrieval_metrics:
retrieval_avg = summary_df[retrieval_metrics].mean(axis=1).round(4)
summary_df['Retrieval (avg)'] = retrieval_avg
# Add generation average
if generation_metrics:
generation_avg = summary_df[generation_metrics].mean(axis=1).round(4)
summary_df['Generation (avg)'] = generation_avg
# Add total score if all three columns exist
if 'Retrieval (avg)' in summary_df.columns and 'Generation (avg)' in summary_df.columns:
# if 'Retrieval (avg)' in summary_df.columns and 'Generation (avg)' in summary_df.columns and 'Judge' in summary_df.columns:
# summary_df['Total Score'] = summary_df[['Retrieval (avg)', 'Generation (avg)', 'Judge']].mean(axis=1).round(4)
summary_df['Total Score'] = summary_df[['Retrieval (avg)', 'Generation (avg)']].mean(axis=1).round(4)
summary_df = summary_df.sort_values('Total Score', ascending=False)
# Select columns for display
summary_cols = ['Model', 'Embeddings', 'Top k']
# if 'Judge' in summary_df.columns:
# summary_cols.append('Judge')
if 'Retrieval (avg)' in summary_df.columns:
summary_cols.append('Retrieval (avg)')
if 'Generation (avg)' in summary_df.columns:
summary_cols.append('Generation (avg)')
if 'Total Score' in summary_df.columns:
summary_cols.append('Total Score')
if 'Version' in summary_df.columns:
summary_cols.append('Version')
if 'Last Updated' in summary_df.columns:
summary_cols.append('Last Updated')
return summary_df[summary_cols]
def create_category_df(df, category, retrieval_col, generation_col):
"""Create a dataframe for a specific category with detailed metrics."""
if df.empty or retrieval_col not in df.columns or generation_col not in df.columns:
return pd.DataFrame()
category_df = df.copy()
# Calculate total score for this category
category_df[f'Score'] = (category_df[retrieval_col] + category_df[generation_col]).round(4)
# Sort by total score
category_df = category_df.sort_values(f'Score', ascending=False)
# Select columns for display
category_cols = ['Model', 'Embeddings', retrieval_col, generation_col, f'Score']
# Rename columns for display
category_df = category_df[category_cols].rename(columns={
retrieval_col: 'Retrieval',
generation_col: 'Generation'
})
return category_df
# Load initial data
results = load_results()
last_version = results.get("last_version", "1.0")
n_questions = results.get("n_questions", "100")
date_title = results.get("date_title", "---")
# Initial data processing
df, retrieval_metrics, generation_metrics, category_metrics = filter_and_process_results(
results, n_versions=1, only_actual_versions=True
)
# Pre-generate charts for initial display
default_models = df['Model'].head(5).tolist() if not df.empty else []
initial_gen_chart_title = LANGUAGES[DEFAULT_LANG]["radar_gen_title"]
initial_ret_chart_title = LANGUAGES[DEFAULT_LANG]["radar_ret_title"]
initial_gen_chart = create_radar_chart(df, default_models, generation_metrics, initial_gen_chart_title)
initial_ret_chart = create_radar_chart(df, default_models, retrieval_metrics, initial_ret_chart_title, name_col='Embeddings')
# Create summary dataframe
summary_df = create_summary_df(df, retrieval_metrics, generation_metrics)
with gr.Blocks(css="""
.title-container {
text-align: center;
margin-bottom: 10px;
}
.description-text {
text-align: left;
padding: 10px;
margin-bottom: 0px;
}
.version-info {
text-align: center;
padding: 10px;
background-color: #f0f0f0;
border-radius: 8px;
margin-bottom: 15px;
}
.version-selector {
padding: 15px;
border: 1px solid #ddd;
border-radius: 8px;
margin-bottom: 20px;
background-color: #f9f9f9;
height: 100%;
}
.citation-block {
padding: 15px;
border: 1px solid #ddd;
border-radius: 8px;
margin-bottom: 20px;
background-color: #f9f9f9;
font-family: monospace;
font-size: 14px;
overflow-x: auto;
height: 100%;
}
.flex-row-container {
display: flex;
justify-content: space-between;
gap: 20px;
width: 100%;
}
.charts-container {
display: flex;
gap: 20px;
margin-bottom: 20px;
}
.chart-box {
flex: 1;
border: 1px solid #eee;
border-radius: 8px;
padding: 10px;
background-color: white;
min-height: 550px; /* Increased height to accommodate legend at bottom */
}
.metrics-table {
border: 1px solid #eee;
border-radius: 8px;
padding: 15px;
background-color: white;
}
.info-text {
font-size: 0.9em;
font-style: italic;
color: #666;
margin-top: 5px;
}
footer {
text-align: center;
margin-top: 30px;
font-size: 0.9em;
color: #666;
}
/* Style for selected rows */
table tbody tr.selected {
background-color: rgba(25, 118, 210, 0.1) !important;
border-left: 3px solid #1976d2;
}
/* Add this class via JavaScript */
.gr-table tbody tr.selected td:first-child {
font-weight: bold;
color: #1976d2;
}
.category-tab {
padding: 10px;
}
.chart-title {
font-size: 1.2em;
font-weight: bold;
margin-bottom: 10px;
text-align: center;
}
.clear-charts-button {
display: flex;
justify-content: center;
margin-top: 10px;
margin-bottom: 20px;
}
.lang-selector {
width: fit-content; /* Adjust width to content */
margin-left: auto; /* Push to the right */
margin-right: 0; /* Keep it flush right */
margin-bottom: 15px; /* Keep bottom margin */
padding: 10px;
background-color: #f9f9f9;
border-radius: 8px;
border: none;
padding: 0 !important;
}
.lang-selector .form {
border: none !important;
}
""") as demo:
current_lang_dict = gr.State(LANGUAGES[DEFAULT_LANG])
current_language = gr.State(DEFAULT_LANG)
with gr.Row(elem_classes=["title-container"]):
#title with emoji connected with dragon
main_title_md = gr.Markdown("# π DRAGON. Dynamic RAG Benchmark On News")
# Language Selector
with gr.Row(elem_classes=["lang-selector"]):
lang_selector = gr.Radio(
list(LANGUAGES.keys()),
label="",
value=DEFAULT_LANG,
interactive=True
)
# Description
with gr.Row(elem_classes=["description-text"]):
description_md = gr.Markdown(value=LANGUAGES[DEFAULT_LANG]["description"])
# Version info
with gr.Row(elem_classes=["version-info"]):
version_info_md = gr.Markdown(
value=LANGUAGES[DEFAULT_LANG]["version_info_template"].format(last_version, n_questions, date_title)
)
# Radar Charts
with gr.Row(elem_classes=["charts-container"]):
with gr.Column(elem_classes=["chart-box"]):
gen_chart_title_md = gr.Markdown(
value=LANGUAGES[DEFAULT_LANG]["gen_metrics_title"], elem_classes=["chart-title"]
)
generation_chart = gr.Plot(value=initial_gen_chart)
with gr.Column(elem_classes=["chart-box"]):
ret_chart_title_md = gr.Markdown(
value=LANGUAGES[DEFAULT_LANG]["ret_metrics_title"], elem_classes=["chart-title"]
)
retrieval_chart = gr.Plot(value=initial_ret_chart)
# Clear Charts Button
with gr.Row(elem_classes=["clear-charts-button"]):
clear_charts_btn = gr.Button(
value=LANGUAGES[DEFAULT_LANG]["clear_charts"],
variant="secondary"
)
# Metrics table with tabs
with gr.Tabs(elem_classes=["metrics-table"]) as metrics_tabs:
with gr.TabItem(label=LANGUAGES[DEFAULT_LANG]["overall_tab_title"]) as summary_tab:
selected_models = gr.State(default_models)
empty_data_md = gr.Markdown(
value=LANGUAGES[DEFAULT_LANG]["no_data_message"],
visible=df.empty # Initially visible only if df is empty
)
# Initialize metrics_table even if empty, but maybe hide it
metrics_table = gr.DataFrame(
value=summary_df if not df.empty else pd.DataFrame(),
headers=summary_df.columns.tolist() if not df.empty else [],
datatype=["str"] * (len(summary_df.columns) if not df.empty else 0),
row_count=(min(10, len(summary_df)) if not summary_df.empty else 0),
col_count=(len(summary_df.columns) if not summary_df.empty else 0),
interactive=False,
wrap=True,
visible=not df.empty # Initially visible only if df is not empty
)
with gr.TabItem(label=LANGUAGES[DEFAULT_LANG]["by_type_tab_title"]) as category_main_tab:
category_tabs = gr.Tabs()
category_tables = {}
category_tab_items = {} # Store TabItem components
category_no_data_mds = {} # Store "no data" Markdowns
category_title_mds = {} # Store category title Markdowns
# Get initial display names
initial_category_display_names = LANGUAGES[DEFAULT_LANG]["category_display_names"]
with category_tabs:
for category, _ in category_metrics:
display_name = initial_category_display_names.get(category, category.capitalize())
if f"{category}_retrieval" in df.columns and f"{category}_generation" in df.columns:
with gr.TabItem(label=display_name, elem_classes=["category-tab"]) as tab_item:
category_tab_items[category] = tab_item # Store the TabItem
# Create dataframe for this category
category_df = create_category_df(df, category, f"{category}_retrieval", f"{category}_generation")
category_no_data_mds[category] = gr.Markdown(
value=LANGUAGES[DEFAULT_LANG]["no_data_category_template"].format(display_name),
visible=category_df.empty
)
category_title_mds[category] = gr.Markdown(
value=LANGUAGES[DEFAULT_LANG]["category_performance_template"].format(display_name),
visible=not category_df.empty
)
category_tables[category] = gr.DataFrame(
value=category_df if not category_df.empty else pd.DataFrame(),
headers=category_df.columns.tolist() if not category_df.empty else [],
datatype=["str"] * (len(category_df.columns) if not category_df.empty else 0),
row_count=(min(10, len(category_df)) if not category_df.empty else 0),
col_count=(len(category_df.columns) if not category_df.empty else 0),
interactive=False,
wrap=True,
visible=not category_df.empty
)
# Version selector and Citation block in a flex container
with gr.Row():
# Citation block (left side)
with gr.Column(scale=1, elem_classes=["citation-block"]):
citation_title_md = gr.Markdown(value=LANGUAGES[DEFAULT_LANG]["citation_title"])
citation_desc_md = gr.Markdown(value=LANGUAGES[DEFAULT_LANG]["citation_description"])
# Version selector (right side)
with gr.Column(scale=1, elem_classes=["version-selector"]):
version_selector_title_md = gr.Markdown(value=LANGUAGES[DEFAULT_LANG]["version_selector_title"])
with gr.Column():
with gr.Row():
with gr.Column(scale=3):
only_actual_versions = gr.Checkbox(
label=LANGUAGES[DEFAULT_LANG]["only_actual_label"],
value=True,
info=LANGUAGES[DEFAULT_LANG]["only_actual_info"]
)
with gr.Column(scale=5):
n_versions_slider = gr.Slider(
minimum=1,
maximum=5,
value=1,
step=1,
label=LANGUAGES[DEFAULT_LANG]["n_versions_label"],
info=LANGUAGES[DEFAULT_LANG]["n_versions_info"]
)
with gr.Row():
filter_btn = gr.Button(value=LANGUAGES[DEFAULT_LANG]["filter_button"], variant="primary")
info_text_md = gr.Markdown(
value=LANGUAGES[DEFAULT_LANG]["info_text"],
elem_classes=["info-text"]
)
# Footer
with gr.Row():
footer_md = gr.Markdown(value=LANGUAGES[DEFAULT_LANG]["footer_text"])
# Handle row selection for radar charts
def update_charts(evt: gr.SelectData, selected_models, current_lang):
try:
# Get current data with the latest filters applied in update_data
current_df = df # Use the globally updated df
current_ret_metrics = retrieval_metrics
current_gen_metrics = generation_metrics
# Debug info
print(f"Selection event: {evt}, type: {type(evt)}")
selected_model = None
# Extract the selected model based on the row index
try:
component = evt.target
row_idx = evt.index[0] if isinstance(evt.index, list) else evt.index
print(f"Row index: {row_idx}, Component: {component}")
# Determine what type of data we're dealing with and extract model name
if component is metrics_table:
# Summary table was clicked
current_summary_df = create_summary_df(current_df, current_ret_metrics, current_gen_metrics)
if isinstance(current_summary_df, pd.DataFrame) and not current_summary_df.empty and 0 <= row_idx < len(current_summary_df):
selected_model = current_summary_df.iloc[row_idx]['Model']
print(f"Selected from summary table: {selected_model}")
else:
# Check if it's a category table
for category, table in category_tables.items():
if component is table:
category_df = create_category_df(
current_df,
category,
f"{category}_retrieval",
f"{category}_generation"
)
if isinstance(category_df, pd.DataFrame) and not category_df.empty and 0 <= row_idx < len(category_df):
selected_model = category_df.iloc[row_idx]['Model']
print(f"Selected from {category} table: {selected_model}")
break
# Fallback if model not found yet (should not happen often with explicit checks)
if selected_model is None and hasattr(evt, 'value') and evt.value:
selected_model = evt.value[0] # Assuming model name is the first column value in the selected cell data
print(f"Selected model using fallback evt.value: {selected_model}")
except IndexError:
print(f"IndexError: row_idx {row_idx} out of bounds for the component's data.")
# Potentially return current state without changes
gen_chart = create_radar_chart(current_df, selected_models, current_gen_metrics, LANGUAGES[current_lang]["radar_gen_title"])
ret_chart = create_radar_chart(current_df, selected_models, current_ret_metrics, LANGUAGES[current_lang]["radar_ret_title"], name_col='Embeddings')
return selected_models, gen_chart, ret_chart
except Exception as e:
print(f"Error extracting model name: {e}")
traceback.print_exc()
# If we found a model name, toggle its selection
if selected_model:
print(f"Selected model: {selected_model}")
available_models = current_df['Model'].tolist() if not current_df.empty else []
if selected_model in available_models:
new_selected_models = selected_models[:] # Create a copy
if selected_model in new_selected_models:
new_selected_models.remove(selected_model)
else:
new_selected_models.append(selected_model)
# Ensure only models from the current dataframe are included
new_selected_models = [model for model in new_selected_models if model in available_models]
# If no models are selected after filtering, select the top available model
if not new_selected_models and available_models:
new_selected_models = [available_models[0]]
selected_models = new_selected_models # Update the state
else:
print(f"Model {selected_model} not found in current dataframe")
# Create radar charts using the current dataframe and metrics
gen_chart = create_radar_chart(current_df, selected_models, current_gen_metrics, LANGUAGES[current_lang]["radar_gen_title"])
ret_chart = create_radar_chart(current_df, selected_models, current_ret_metrics, LANGUAGES[current_lang]["radar_ret_title"], name_col='Embeddings')
return selected_models, gen_chart, ret_chart
except Exception as e:
print(f"Error in update_charts: {e}")
print(traceback.format_exc())
# Return potentially existing chart values if error occurs
current_gen_chart = create_radar_chart(df, selected_models, generation_metrics, LANGUAGES[current_lang]["radar_gen_title"])
current_ret_chart = create_radar_chart(df, selected_models, retrieval_metrics, LANGUAGES[current_lang]["radar_ret_title"], name_col='Embeddings')
return selected_models, current_gen_chart, current_ret_chart
# Use custom event handler for row selection
# Make sure to pass current_language state
metrics_table.select(
fn=update_charts,
inputs=[selected_models, current_language],
outputs=[selected_models, generation_chart, retrieval_chart]
)
# Add selection handlers for category tables too
for category_table in category_tables.values():
category_table.select(
fn=update_charts,
inputs=[selected_models, current_language],
outputs=[selected_models, generation_chart, retrieval_chart]
)
# Handle version filter changes
def update_data(n_versions, only_actual, current_selected_models, current_lang):
try:
# Update global data (df, metrics)
global df, retrieval_metrics, generation_metrics
new_df, new_ret_metrics, new_gen_metrics, new_category_metrics = filter_and_process_results(
results, n_versions=n_versions, only_actual_versions=only_actual
)
# Update global references
df = new_df
retrieval_metrics = new_ret_metrics
generation_metrics = new_gen_metrics
available_models = df['Model'].tolist() if not df.empty else []
# Filter selected models
filtered_selected_models = [model for model in current_selected_models if model in available_models]
if not filtered_selected_models and available_models:
filtered_selected_models = available_models[:min(5, len(available_models))]
# Create charts with localized titles
gen_chart_val = create_radar_chart(df, filtered_selected_models, generation_metrics, LANGUAGES[current_lang]["radar_gen_title"])
ret_chart_val = create_radar_chart(df, filtered_selected_models, retrieval_metrics, LANGUAGES[current_lang]["radar_ret_title"], name_col='Embeddings')
# Create summary dataframe
summary_df_val = create_summary_df(df, retrieval_metrics, generation_metrics)
# Prepare outputs for tables and charts
outputs = {
metrics_table: gr.update(value=summary_df_val if not summary_df_val.empty else pd.DataFrame(), visible=not summary_df_val.empty),
empty_data_md: gr.update(visible=summary_df_val.empty),
generation_chart: gen_chart_val,
retrieval_chart: ret_chart_val,
selected_models: filtered_selected_models
}
# Update category tables
current_category_display_names = LANGUAGES[current_lang]["category_display_names"]
for category in category_tables.keys():
if f"{category}_retrieval" in df.columns and f"{category}_generation" in df.columns:
category_df_val = create_category_df(df, category, f"{category}_retrieval", f"{category}_generation")
display_name = current_category_display_names.get(category, category.capitalize())
outputs[category_tables[category]] = gr.update(value=category_df_val if not category_df_val.empty else pd.DataFrame(), visible=not category_df_val.empty)
outputs[category_no_data_mds[category]] = gr.update(visible=category_df_val.empty)
outputs[category_title_mds[category]] = gr.update(visible=not category_df_val.empty)
else:
# Hide table and titles if data for category doesn't exist with current filters
outputs[category_tables[category]] = gr.update(value=pd.DataFrame(), visible=False)
outputs[category_no_data_mds[category]] = gr.update(visible=True) # Show 'no data' instead? Or just hide all? Let's hide title too.
outputs[category_title_mds[category]] = gr.update(visible=False)
# Return updates in the correct order based on outputs list
output_list = [outputs[metrics_table], outputs[empty_data_md], outputs[generation_chart], outputs[retrieval_chart], outputs[selected_models]]
for category in category_tables.keys():
output_list.extend([
outputs[category_tables[category]],
outputs[category_no_data_mds[category]],
outputs[category_title_mds[category]]
])
return output_list
except Exception as e:
print(f"Error in update_data: {e}")
print(traceback.format_exc())
# Return original values in case of error; construct a list of Nones matching output structure
num_category_outputs = len(category_tables.keys()) * 3
return [gr.update()]*5 + [gr.update()]*num_category_outputs # Return no changes
# Define filter button outputs
filter_outputs = [metrics_table, empty_data_md, generation_chart, retrieval_chart, selected_models]
for category in category_tables.keys():
filter_outputs.extend([category_tables[category], category_no_data_mds[category], category_title_mds[category]])
filter_btn.click(
fn=update_data,
inputs=[n_versions_slider, only_actual_versions, selected_models, current_language], # Pass language
outputs=filter_outputs
)
# Function to clear charts
def clear_charts_localized(current_lang): # Pass language
empty_models = []
# Create empty charts with localized titles
empty_gen_chart = create_radar_chart(df, empty_models, generation_metrics, LANGUAGES[current_lang]["radar_gen_title"])
empty_ret_chart = create_radar_chart(df, empty_models, retrieval_metrics, LANGUAGES[current_lang]["radar_ret_title"], name_col='Embeddings')
return empty_models, empty_gen_chart, empty_ret_chart
# Connect clear charts button
clear_charts_btn.click(
fn=clear_charts_localized,
inputs=[current_language], # Pass language
outputs=[selected_models, generation_chart, retrieval_chart]
)
# Function to update language-specific elements
def update_language(selected_lang):
lang_dict = LANGUAGES[selected_lang]
category_display_names = lang_dict.get("category_display_names", {})
updates = {
current_language: selected_lang, # Update the state holding the language key
current_lang_dict: lang_dict, # Update the state holding the translations
# lang_selector: gr.update(label=lang_dict["lang_selector_label"]),
description_md: gr.update(value=lang_dict["description"]),
version_info_md: gr.update(value=lang_dict["version_info_template"].format(last_version, n_questions, date_title)),
gen_chart_title_md: gr.update(value=lang_dict["gen_metrics_title"]),
ret_chart_title_md: gr.update(value=lang_dict["ret_metrics_title"]),
clear_charts_btn: gr.update(value=lang_dict["clear_charts"]),
summary_tab: gr.update(label=lang_dict["overall_tab_title"]),
empty_data_md: gr.update(value=lang_dict["no_data_message"]),
category_main_tab: gr.update(label=lang_dict["by_type_tab_title"]),
citation_title_md: gr.update(value=lang_dict["citation_title"]),
citation_desc_md: gr.update(value=lang_dict["citation_description"]),
version_selector_title_md: gr.update(value=lang_dict["version_selector_title"]),
only_actual_versions: gr.update(label=lang_dict["only_actual_label"], info=lang_dict["only_actual_info"]),
n_versions_slider: gr.update(label=lang_dict["n_versions_label"], info=lang_dict["n_versions_info"]),
filter_btn: gr.update(value=lang_dict["filter_button"]),
info_text_md: gr.update(value=lang_dict["info_text"]),
footer_md: gr.update(value=lang_dict["footer_text"]),
# Update category tab labels and conditional text templates
**{tab_item: gr.update(label=category_display_names.get(category, category.capitalize()))
for category, tab_item in category_tab_items.items()},
**{no_data_md: gr.update(value=lang_dict["no_data_category_template"].format(category_display_names.get(category, category.capitalize())))
for category, no_data_md in category_no_data_mds.items()},
**{title_md: gr.update(value=lang_dict["category_performance_template"].format(category_display_names.get(category, category.capitalize())))
for category, title_md in category_title_mds.items()},
# Update chart titles dynamically by re-plotting (needed if chart titles change)
generation_chart: create_radar_chart(df, selected_models.value, generation_metrics, lang_dict["radar_gen_title"]),
retrieval_chart: create_radar_chart(df, selected_models.value, retrieval_metrics, lang_dict["radar_ret_title"], name_col='Embeddings')
}
# Return updates in the correct order based on outputs list below
output_list = [
updates[current_language], updates[current_lang_dict],
updates[description_md], updates[version_info_md], updates[gen_chart_title_md], updates[ret_chart_title_md],
updates[clear_charts_btn], updates[summary_tab], updates[empty_data_md], updates[category_main_tab],
updates[citation_title_md], updates[citation_desc_md], updates[version_selector_title_md],
updates[only_actual_versions], updates[n_versions_slider], updates[filter_btn], updates[info_text_md],
updates[footer_md], updates[generation_chart], updates[retrieval_chart]
]
# Add category tab items, no_data markdown, and title markdown updates
for category in category_tables.keys(): # Use category_tables as the source of truth for existing categories
if category in category_tab_items: output_list.append(updates[category_tab_items[category]])
if category in category_no_data_mds: output_list.append(updates[category_no_data_mds[category]])
if category in category_title_mds: output_list.append(updates[category_title_mds[category]])
return output_list
# Define the outputs for the language selector change event
lang_outputs = [
current_language, current_lang_dict, description_md, version_info_md,
gen_chart_title_md, ret_chart_title_md, clear_charts_btn, summary_tab, empty_data_md,
category_main_tab, citation_title_md, citation_desc_md, version_selector_title_md,
only_actual_versions, n_versions_slider, filter_btn, info_text_md, footer_md,
generation_chart, retrieval_chart # Charts need to be updated too if their titles change
]
# Add category tab items, no_data markdown, and title markdown to outputs
for category in category_tables.keys():
if category in category_tab_items: lang_outputs.append(category_tab_items[category])
if category in category_no_data_mds: lang_outputs.append(category_no_data_mds[category])
if category in category_title_mds: lang_outputs.append(category_title_mds[category])
# Connect language selector change event
lang_selector.change(
fn=update_language,
inputs=[lang_selector],
outputs=lang_outputs
)
if __name__ == "__main__":
demo.launch()
|