|
import gradio as gr |
|
from openai import OpenAI |
|
import os |
|
|
|
ACCESS_TOKEN = os.getenv("HF_TOKEN") |
|
print("Access token loaded.") |
|
|
|
client = OpenAI( |
|
base_url="https://api-inference.huggingface.co/v1/", |
|
api_key=ACCESS_TOKEN, |
|
) |
|
print("OpenAI client initialized.") |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message="You are a helpful assistant.", |
|
max_tokens=512, |
|
temperature=0.7, |
|
top_p=0.95, |
|
frequency_penalty=0.0, |
|
seed=-1 |
|
): |
|
print(f"Received message: {message}") |
|
print(f"History: {history}") |
|
print(f"System message: {system_message}") |
|
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") |
|
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") |
|
|
|
|
|
if seed == -1: |
|
seed = None |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
print("Initial messages array constructed.") |
|
|
|
|
|
for val in history: |
|
user_part = val[0] |
|
assistant_part = val[1] |
|
if user_part: |
|
messages.append({"role": "user", "content": user_part}) |
|
print(f"Added user message to context: {user_part}") |
|
if assistant_part: |
|
messages.append({"role": "assistant", "content": assistant_part}) |
|
print(f"Added assistant message to context: {assistant_part}") |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
print("Latest user message appended.") |
|
|
|
|
|
model_to_use = "meta-llama/Llama-3.3-70B-Instruct" |
|
print(f"Model selected for inference: {model_to_use}") |
|
|
|
|
|
response = "" |
|
print("Sending request to OpenAI API.") |
|
|
|
for message_chunk in client.chat.completions.create( |
|
model=model_to_use, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
frequency_penalty=frequency_penalty, |
|
seed=seed, |
|
messages=messages, |
|
): |
|
token_text = message_chunk.choices[0].delta.content |
|
print(f"Received token: {token_text}") |
|
response += token_text |
|
yield response |
|
|
|
print("Completed response generation.") |
|
|
|
|
|
|
|
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Start chatting!", likeable=True, layout="panel") |
|
print("Chatbot interface created.") |
|
|
|
system_message_box = gr.Textbox(value="You are a helpful assistant.", label="System Prompt", visible=False) |
|
|
|
max_tokens_slider = gr.Slider( |
|
minimum=1, |
|
maximum=4096, |
|
value=512, |
|
step=1, |
|
label="Max new tokens" |
|
) |
|
temperature_slider = gr.Slider( |
|
minimum=0.1, |
|
maximum=4.0, |
|
value=0.7, |
|
step=0.1, |
|
label="Temperature" |
|
) |
|
top_p_slider = gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-P" |
|
) |
|
frequency_penalty_slider = gr.Slider( |
|
minimum=-2.0, |
|
maximum=2.0, |
|
value=0.0, |
|
step=0.1, |
|
label="Frequency Penalty" |
|
) |
|
seed_slider = gr.Slider( |
|
minimum=-1, |
|
maximum=65535, |
|
value=-1, |
|
step=1, |
|
label="Seed (-1 for random)" |
|
) |
|
|
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=respond, |
|
additional_inputs=[ |
|
system_message_box, |
|
max_tokens_slider, |
|
temperature_slider, |
|
top_p_slider, |
|
frequency_penalty_slider, |
|
seed_slider, |
|
], |
|
fill_height=True, |
|
chatbot=chatbot, |
|
theme="Nymbo/Nymbo_Theme", |
|
) |
|
print("ChatInterface object created.") |
|
|
|
with demo: |
|
|
|
pass |
|
|
|
print("Gradio interface initialized.") |
|
|
|
if __name__ == "__main__": |
|
print("Launching the demo application.") |
|
demo.launch() |
|
|