Spaces:
Runtime error
Runtime error
File size: 14,170 Bytes
35a9ed4 bdee200 35a9ed4 2a274cc 5bdf407 35a9ed4 b29876f e4f7d0b b29876f 2a274cc 35a9ed4 e856606 bdee200 19540cf bdee200 893825d bdee200 19540cf 488936c 6207473 35a9ed4 e4f7d0b de04166 e4f7d0b de04166 e4f7d0b de04166 e4f7d0b de04166 e4f7d0b de04166 e4f7d0b 5672cc2 678631b e4f7d0b 678631b 5672cc2 e4f7d0b 5672cc2 13d4a9a 678631b 5672cc2 2a274cc e5eaa21 854614c e5eaa21 5bdf407 35a9ed4 f289e91 35a9ed4 8c2e68c e5eaa21 2a274cc f289e91 e5eaa21 854614c e5eaa21 f289e91 dc9bdbf 8c2e68c e5eaa21 af1dd1a 2a274cc d28dde6 2a274cc c0784bd 5bdf407 44284c4 f289e91 7f75f49 44284c4 5672cc2 f289e91 e5eaa21 854614c e5eaa21 6feb9f3 35a9ed4 e4f7d0b de04166 e4f7d0b de04166 e4f7d0b de04166 35a9ed4 e4f7d0b 9d69626 35a9ed4 b47ae2e e4f7d0b 5672cc2 e4f7d0b 5672cc2 27ab64e 86023a7 5672cc2 5439a6f 5672cc2 44284c4 5672cc2 e4f7d0b e9f440d e4f7d0b fe841a7 e4f7d0b fe841a7 e9f440d e4f7d0b e9f440d e4f7d0b fe841a7 e4f7d0b fe841a7 e4f7d0b 35a9ed4 e9f440d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import numpy as np
import os
import tempfile
import spaces
import gradio as gr
import subprocess
import sys
import cv2
import threading
import queue
import time
from collections import deque
from deep_translator import GoogleTranslator
def install_flash_attn_wheel():
flash_attn_wheel_url = "https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu123torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", flash_attn_wheel_url])
print("Wheel installed successfully!")
except subprocess.CalledProcessError as e:
print(f"Failed to install the flash attnetion wheel. Error: {e}")
install_flash_attn_wheel()
try:
from mmengine.visualization import Visualizer
except ImportError:
Visualizer = None
print("Warning: mmengine is not installed, visualization is disabled.")
# Load the model and tokenizer
model_path = "ByteDance/Sa2VA-4B"
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype="auto",
device_map="cuda:0",
trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code = True,
)
class WebcamProcessor:
def __init__(self, model, tokenizer, fps_target=15, buffer_size=5):
self.model = model
self.tokenizer = tokenizer
self.fps_target = fps_target
self.frame_interval = 1.0 / fps_target
self.buffer_size = buffer_size
self.frame_buffer = deque(maxlen=buffer_size)
self.result_queue = queue.Queue()
self.is_running = False
self.last_process_time = 0
def start(self):
try:
self.is_running = True
self.capture = cv2.VideoCapture(0)
if not self.capture.isOpened():
raise Exception("Failed to open webcam")
# Set camera properties
self.capture.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
self.capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
self.capture_thread = threading.Thread(target=self._capture_loop)
self.process_thread = threading.Thread(target=self._process_loop)
self.capture_thread.daemon = True
self.process_thread.daemon = True
self.capture_thread.start()
self.process_thread.start()
return "Webcam started successfully"
except Exception as e:
self.is_running = False
return f"Failed to start webcam: {str(e)}"
def stop(self):
try:
self.is_running = False
if hasattr(self, 'capture_thread'):
self.capture_thread.join(timeout=1.0)
if hasattr(self, 'process_thread'):
self.process_thread.join(timeout=1.0)
if hasattr(self, 'capture'):
self.capture.release()
return "Webcam stopped successfully"
except Exception as e:
return f"Error stopping webcam: {str(e)}"
def _capture_loop(self):
while self.is_running:
try:
ret, frame = self.capture.read()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = cv2.resize(frame, (640, 480))
current_time = time.time()
if current_time - self.last_process_time >= self.frame_interval:
self.frame_buffer.append(frame)
self.last_process_time = current_time
time.sleep(0.01) # Small delay to prevent CPU overuse
except Exception as e:
print(f"Capture error: {e}")
time.sleep(0.1)
def _process_loop(self):
while self.is_running:
try:
if len(self.frame_buffer) >= self.buffer_size:
frames = list(self.frame_buffer)
result = self.model.predict_forward(
video=frames,
text="<image>Describe what you see",
tokenizer=self.tokenizer
)
self.result_queue.put(result)
self.frame_buffer.clear()
time.sleep(0.1)
except Exception as e:
print(f"Processing error: {e}")
time.sleep(0.1)
from third_parts import VideoReader
def read_video(video_path, video_interval):
vid_frames = VideoReader(video_path)[::video_interval]
temp_dir = tempfile.mkdtemp()
os.makedirs(temp_dir, exist_ok=True)
image_paths = []
for frame_idx in range(len(vid_frames)):
frame_image = vid_frames[frame_idx]
frame_image = frame_image[..., ::-1]
frame_image = Image.fromarray(frame_image)
vid_frames[frame_idx] = frame_image
image_path = os.path.join(temp_dir, f"frame_{frame_idx:04d}.jpg")
frame_image.save(image_path, format="JPEG")
image_paths.append(image_path)
return vid_frames, image_paths
def visualize(pred_mask, image_path, work_dir):
visualizer = Visualizer()
img = cv2.imread(image_path)
visualizer.set_image(img)
visualizer.draw_binary_masks(pred_mask, colors='g', alphas=0.4)
visual_result = visualizer.get_image()
output_path = os.path.join(work_dir, os.path.basename(image_path))
cv2.imwrite(output_path, visual_result)
return output_path
def translate_to_korean(text):
try:
translator = GoogleTranslator(source='en', target='ko')
return translator.translate(text)
except Exception as e:
print(f"Translation error: {e}")
return text
@spaces.GPU
def image_vision(image_input_path, prompt):
is_korean = any(ord('κ°') <= ord(char) <= ord('ν£') for char in prompt)
image_path = image_input_path
text_prompts = f"<image>{prompt}"
image = Image.open(image_path).convert('RGB')
input_dict = {
'image': image,
'text': text_prompts,
'past_text': '',
'mask_prompts': None,
'tokenizer': tokenizer,
}
return_dict = model.predict_forward(**input_dict)
print(return_dict)
answer = return_dict["prediction"]
if is_korean:
if '[SEG]' in answer:
parts = answer.split('[SEG]')
translated_parts = [translate_to_korean(part.strip()) for part in parts]
answer = '[SEG]'.join(translated_parts)
else:
answer = translate_to_korean(answer)
seg_image = return_dict["prediction_masks"]
if '[SEG]' in answer and Visualizer is not None:
pred_masks = seg_image[0]
temp_dir = tempfile.mkdtemp()
pred_mask = pred_masks
os.makedirs(temp_dir, exist_ok=True)
seg_result = visualize(pred_mask, image_input_path, temp_dir)
return answer, seg_result
else:
return answer, None
@spaces.GPU(duration=80)
def video_vision(video_input_path, prompt, video_interval):
is_korean = any(ord('κ°') <= ord(char) <= ord('ν£') for char in prompt)
cap = cv2.VideoCapture(video_input_path)
original_fps = cap.get(cv2.CAP_PROP_FPS)
frame_skip_factor = video_interval
new_fps = original_fps / frame_skip_factor
vid_frames, image_paths = read_video(video_input_path, video_interval)
question = f"<image>{prompt}"
result = model.predict_forward(
video=vid_frames,
text=question,
tokenizer=tokenizer,
)
prediction = result['prediction']
print(prediction)
if is_korean:
if '[SEG]' in prediction:
parts = prediction.split('[SEG]')
translated_parts = [translate_to_korean(part.strip()) for part in parts]
prediction = '[SEG]'.join(translated_parts)
else:
prediction = translate_to_korean(prediction)
if '[SEG]' in prediction and Visualizer is not None:
_seg_idx = 0
pred_masks = result['prediction_masks'][_seg_idx]
seg_frames = []
for frame_idx in range(len(vid_frames)):
pred_mask = pred_masks[frame_idx]
temp_dir = tempfile.mkdtemp()
os.makedirs(temp_dir, exist_ok=True)
seg_frame = visualize(pred_mask, image_paths[frame_idx], temp_dir)
seg_frames.append(seg_frame)
output_video = "output_video.mp4"
frame = cv2.imread(seg_frames[0])
height, width, layers = frame.shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video = cv2.VideoWriter(output_video, fourcc, new_fps, (width, height))
for img_path in seg_frames:
frame = cv2.imread(img_path)
video.write(frame)
video.release()
print(f"Video created successfully at {output_video}")
return prediction, output_video
else:
return prediction, None
def webcam_vision(prompt):
try:
if not hasattr(webcam_vision, 'processor'):
webcam_vision.processor = WebcamProcessor(model, tokenizer)
if not webcam_vision.processor.is_running:
status = webcam_vision.processor.start()
if "Failed" in status:
return f"Error: {status}"
try:
result = webcam_vision.processor.result_queue.get(timeout=5)
prediction = result['prediction']
# Check if Korean translation is needed
is_korean = any(ord('κ°') <= ord(char) <= ord('ν£') for char in prompt)
if is_korean:
prediction = translate_to_korean(prediction)
return prediction
except queue.Empty:
return "No results available yet. Please try again."
except Exception as e:
return f"Processing error: {str(e)}"
except Exception as e:
return f"System error: {str(e)}"
# Gradio UI
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Column():
gr.Markdown("# Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos")
with gr.Tab("Single Image"):
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Image IN", type="filepath")
with gr.Row():
instruction = gr.Textbox(label="Instruction", scale=4)
submit_image_btn = gr.Button("Submit", scale=1)
with gr.Column():
output_res = gr.Textbox(label="Response")
output_image = gr.Image(label="Segmentation", type="numpy")
submit_image_btn.click(
fn = image_vision,
inputs = [image_input, instruction],
outputs = [output_res, output_image]
)
with gr.Tab("Video"):
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Video IN")
frame_interval = gr.Slider(label="Frame interval", step=1, minimum=1, maximum=12, value=6)
with gr.Row():
vid_instruction = gr.Textbox(label="Instruction", scale=4)
submit_video_btn = gr.Button("Submit", scale=1)
with gr.Column():
vid_output_res = gr.Textbox(label="Response")
output_video = gr.Video(label="Segmentation")
submit_video_btn.click(
fn = video_vision,
inputs = [video_input, vid_instruction, frame_interval],
outputs = [vid_output_res, output_video]
)
with gr.Tab("Webcam"):
with gr.Row():
with gr.Column():
# μΉμΊ μ
λ ₯μ μν μ»΄ν¬λνΈ
webcam_input = gr.Image(
label="Webcam Input",
type="numpy",
sources="webcam",
streaming=True,
mirror_webcam=True
)
with gr.Row():
webcam_instruction = gr.Textbox(
label="Instruction",
placeholder="Enter instruction here...",
scale=4
)
start_button = gr.Button("Start", scale=1)
stop_button = gr.Button("Stop", scale=1)
with gr.Column():
webcam_output = gr.Textbox(label="Response")
processed_view = gr.Image(label="Processed View")
status_text = gr.Textbox(label="Status", value="Ready")
def start_webcam_processing(instruction):
try:
if hasattr(webcam_vision, 'processor'):
webcam_vision.processor.stop()
webcam_vision.processor = WebcamProcessor(model, tokenizer)
status = webcam_vision.processor.start()
return webcam_vision(instruction)
except Exception as e:
return f"Error starting webcam: {str(e)}"
start_button.click(
fn=start_webcam_processing,
inputs=[webcam_instruction],
outputs=[webcam_output]
)
stop_button.click(
fn=lambda: "Stopped" if hasattr(webcam_vision, 'processor') and webcam_vision.processor.stop() else "Not running",
outputs=[status_text]
)
# μΉμΊ μ‘μΈμ€λ₯Ό μν μ€μ μΆκ°
demo.queue().launch(
server_name="0.0.0.0", # λͺ¨λ IPμμ μ κ·Ό κ°λ₯
server_port=7860, # ν¬νΈ μ§μ
share=True, # κ³΅κ° λ§ν¬ μμ±
show_api=False,
show_error=True
) |