aiqcamp's picture
Update app.py
e9f440d verified
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import numpy as np
import os
import tempfile
import spaces
import gradio as gr
import subprocess
import sys
import cv2
import threading
import queue
import time
from collections import deque
from deep_translator import GoogleTranslator
def install_flash_attn_wheel():
flash_attn_wheel_url = "https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu123torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", flash_attn_wheel_url])
print("Wheel installed successfully!")
except subprocess.CalledProcessError as e:
print(f"Failed to install the flash attnetion wheel. Error: {e}")
install_flash_attn_wheel()
try:
from mmengine.visualization import Visualizer
except ImportError:
Visualizer = None
print("Warning: mmengine is not installed, visualization is disabled.")
# Load the model and tokenizer
model_path = "ByteDance/Sa2VA-4B"
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype="auto",
device_map="cuda:0",
trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code = True,
)
class WebcamProcessor:
def __init__(self, model, tokenizer, fps_target=15, buffer_size=5):
self.model = model
self.tokenizer = tokenizer
self.fps_target = fps_target
self.frame_interval = 1.0 / fps_target
self.buffer_size = buffer_size
self.frame_buffer = deque(maxlen=buffer_size)
self.result_queue = queue.Queue()
self.is_running = False
self.last_process_time = 0
def start(self):
try:
self.is_running = True
self.capture = cv2.VideoCapture(0)
if not self.capture.isOpened():
raise Exception("Failed to open webcam")
# Set camera properties
self.capture.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
self.capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
self.capture_thread = threading.Thread(target=self._capture_loop)
self.process_thread = threading.Thread(target=self._process_loop)
self.capture_thread.daemon = True
self.process_thread.daemon = True
self.capture_thread.start()
self.process_thread.start()
return "Webcam started successfully"
except Exception as e:
self.is_running = False
return f"Failed to start webcam: {str(e)}"
def stop(self):
try:
self.is_running = False
if hasattr(self, 'capture_thread'):
self.capture_thread.join(timeout=1.0)
if hasattr(self, 'process_thread'):
self.process_thread.join(timeout=1.0)
if hasattr(self, 'capture'):
self.capture.release()
return "Webcam stopped successfully"
except Exception as e:
return f"Error stopping webcam: {str(e)}"
def _capture_loop(self):
while self.is_running:
try:
ret, frame = self.capture.read()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = cv2.resize(frame, (640, 480))
current_time = time.time()
if current_time - self.last_process_time >= self.frame_interval:
self.frame_buffer.append(frame)
self.last_process_time = current_time
time.sleep(0.01) # Small delay to prevent CPU overuse
except Exception as e:
print(f"Capture error: {e}")
time.sleep(0.1)
def _process_loop(self):
while self.is_running:
try:
if len(self.frame_buffer) >= self.buffer_size:
frames = list(self.frame_buffer)
result = self.model.predict_forward(
video=frames,
text="<image>Describe what you see",
tokenizer=self.tokenizer
)
self.result_queue.put(result)
self.frame_buffer.clear()
time.sleep(0.1)
except Exception as e:
print(f"Processing error: {e}")
time.sleep(0.1)
from third_parts import VideoReader
def read_video(video_path, video_interval):
vid_frames = VideoReader(video_path)[::video_interval]
temp_dir = tempfile.mkdtemp()
os.makedirs(temp_dir, exist_ok=True)
image_paths = []
for frame_idx in range(len(vid_frames)):
frame_image = vid_frames[frame_idx]
frame_image = frame_image[..., ::-1]
frame_image = Image.fromarray(frame_image)
vid_frames[frame_idx] = frame_image
image_path = os.path.join(temp_dir, f"frame_{frame_idx:04d}.jpg")
frame_image.save(image_path, format="JPEG")
image_paths.append(image_path)
return vid_frames, image_paths
def visualize(pred_mask, image_path, work_dir):
visualizer = Visualizer()
img = cv2.imread(image_path)
visualizer.set_image(img)
visualizer.draw_binary_masks(pred_mask, colors='g', alphas=0.4)
visual_result = visualizer.get_image()
output_path = os.path.join(work_dir, os.path.basename(image_path))
cv2.imwrite(output_path, visual_result)
return output_path
def translate_to_korean(text):
try:
translator = GoogleTranslator(source='en', target='ko')
return translator.translate(text)
except Exception as e:
print(f"Translation error: {e}")
return text
@spaces.GPU
def image_vision(image_input_path, prompt):
is_korean = any(ord('κ°€') <= ord(char) <= ord('힣') for char in prompt)
image_path = image_input_path
text_prompts = f"<image>{prompt}"
image = Image.open(image_path).convert('RGB')
input_dict = {
'image': image,
'text': text_prompts,
'past_text': '',
'mask_prompts': None,
'tokenizer': tokenizer,
}
return_dict = model.predict_forward(**input_dict)
print(return_dict)
answer = return_dict["prediction"]
if is_korean:
if '[SEG]' in answer:
parts = answer.split('[SEG]')
translated_parts = [translate_to_korean(part.strip()) for part in parts]
answer = '[SEG]'.join(translated_parts)
else:
answer = translate_to_korean(answer)
seg_image = return_dict["prediction_masks"]
if '[SEG]' in answer and Visualizer is not None:
pred_masks = seg_image[0]
temp_dir = tempfile.mkdtemp()
pred_mask = pred_masks
os.makedirs(temp_dir, exist_ok=True)
seg_result = visualize(pred_mask, image_input_path, temp_dir)
return answer, seg_result
else:
return answer, None
@spaces.GPU(duration=80)
def video_vision(video_input_path, prompt, video_interval):
is_korean = any(ord('κ°€') <= ord(char) <= ord('힣') for char in prompt)
cap = cv2.VideoCapture(video_input_path)
original_fps = cap.get(cv2.CAP_PROP_FPS)
frame_skip_factor = video_interval
new_fps = original_fps / frame_skip_factor
vid_frames, image_paths = read_video(video_input_path, video_interval)
question = f"<image>{prompt}"
result = model.predict_forward(
video=vid_frames,
text=question,
tokenizer=tokenizer,
)
prediction = result['prediction']
print(prediction)
if is_korean:
if '[SEG]' in prediction:
parts = prediction.split('[SEG]')
translated_parts = [translate_to_korean(part.strip()) for part in parts]
prediction = '[SEG]'.join(translated_parts)
else:
prediction = translate_to_korean(prediction)
if '[SEG]' in prediction and Visualizer is not None:
_seg_idx = 0
pred_masks = result['prediction_masks'][_seg_idx]
seg_frames = []
for frame_idx in range(len(vid_frames)):
pred_mask = pred_masks[frame_idx]
temp_dir = tempfile.mkdtemp()
os.makedirs(temp_dir, exist_ok=True)
seg_frame = visualize(pred_mask, image_paths[frame_idx], temp_dir)
seg_frames.append(seg_frame)
output_video = "output_video.mp4"
frame = cv2.imread(seg_frames[0])
height, width, layers = frame.shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video = cv2.VideoWriter(output_video, fourcc, new_fps, (width, height))
for img_path in seg_frames:
frame = cv2.imread(img_path)
video.write(frame)
video.release()
print(f"Video created successfully at {output_video}")
return prediction, output_video
else:
return prediction, None
def webcam_vision(prompt):
try:
if not hasattr(webcam_vision, 'processor'):
webcam_vision.processor = WebcamProcessor(model, tokenizer)
if not webcam_vision.processor.is_running:
status = webcam_vision.processor.start()
if "Failed" in status:
return f"Error: {status}"
try:
result = webcam_vision.processor.result_queue.get(timeout=5)
prediction = result['prediction']
# Check if Korean translation is needed
is_korean = any(ord('κ°€') <= ord(char) <= ord('힣') for char in prompt)
if is_korean:
prediction = translate_to_korean(prediction)
return prediction
except queue.Empty:
return "No results available yet. Please try again."
except Exception as e:
return f"Processing error: {str(e)}"
except Exception as e:
return f"System error: {str(e)}"
# Gradio UI
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Column():
gr.Markdown("# Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos")
with gr.Tab("Single Image"):
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Image IN", type="filepath")
with gr.Row():
instruction = gr.Textbox(label="Instruction", scale=4)
submit_image_btn = gr.Button("Submit", scale=1)
with gr.Column():
output_res = gr.Textbox(label="Response")
output_image = gr.Image(label="Segmentation", type="numpy")
submit_image_btn.click(
fn = image_vision,
inputs = [image_input, instruction],
outputs = [output_res, output_image]
)
with gr.Tab("Video"):
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Video IN")
frame_interval = gr.Slider(label="Frame interval", step=1, minimum=1, maximum=12, value=6)
with gr.Row():
vid_instruction = gr.Textbox(label="Instruction", scale=4)
submit_video_btn = gr.Button("Submit", scale=1)
with gr.Column():
vid_output_res = gr.Textbox(label="Response")
output_video = gr.Video(label="Segmentation")
submit_video_btn.click(
fn = video_vision,
inputs = [video_input, vid_instruction, frame_interval],
outputs = [vid_output_res, output_video]
)
with gr.Tab("Webcam"):
with gr.Row():
with gr.Column():
# μ›ΉμΊ  μž…λ ₯을 μœ„ν•œ μ»΄ν¬λ„ŒνŠΈ
webcam_input = gr.Image(
label="Webcam Input",
type="numpy",
sources="webcam",
streaming=True,
mirror_webcam=True
)
with gr.Row():
webcam_instruction = gr.Textbox(
label="Instruction",
placeholder="Enter instruction here...",
scale=4
)
start_button = gr.Button("Start", scale=1)
stop_button = gr.Button("Stop", scale=1)
with gr.Column():
webcam_output = gr.Textbox(label="Response")
processed_view = gr.Image(label="Processed View")
status_text = gr.Textbox(label="Status", value="Ready")
def start_webcam_processing(instruction):
try:
if hasattr(webcam_vision, 'processor'):
webcam_vision.processor.stop()
webcam_vision.processor = WebcamProcessor(model, tokenizer)
status = webcam_vision.processor.start()
return webcam_vision(instruction)
except Exception as e:
return f"Error starting webcam: {str(e)}"
start_button.click(
fn=start_webcam_processing,
inputs=[webcam_instruction],
outputs=[webcam_output]
)
stop_button.click(
fn=lambda: "Stopped" if hasattr(webcam_vision, 'processor') and webcam_vision.processor.stop() else "Not running",
outputs=[status_text]
)
# μ›ΉμΊ  μ•‘μ„ΈμŠ€λ₯Ό μœ„ν•œ μ„€μ • μΆ”κ°€
demo.queue().launch(
server_name="0.0.0.0", # λͺ¨λ“  IPμ—μ„œ μ ‘κ·Ό κ°€λŠ₯
server_port=7860, # 포트 μ§€μ •
share=True, # 곡개 링크 생성
show_api=False,
show_error=True
)