aiqtech commited on
Commit
af88069
·
verified ·
1 Parent(s): bc013d2

Delete app-backup1.py

Browse files
Files changed (1) hide show
  1. app-backup1.py +0 -602
app-backup1.py DELETED
@@ -1,602 +0,0 @@
1
- import gradio as gr
2
- import replicate
3
- import os
4
- from typing import Optional, List
5
- from huggingface_hub import whoami
6
- from PIL import Image
7
- import requests
8
- from io import BytesIO
9
- import tempfile
10
- import base64
11
-
12
- # --- Replicate API Configuration ---
13
- REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN")
14
-
15
- if not REPLICATE_API_TOKEN:
16
- raise ValueError("REPLICATE_API_TOKEN environment variable is not set.")
17
-
18
- # Initialize Replicate client
19
- os.environ["REPLICATE_API_TOKEN"] = REPLICATE_API_TOKEN
20
-
21
- def verify_login_status(token: Optional[gr.OAuthToken]) -> bool:
22
- """Verifies if the user is logged in to Hugging Face."""
23
- if not token:
24
- return False
25
- try:
26
- user_info = whoami(token=token.token)
27
- return True if user_info else False
28
- except Exception as e:
29
- print(f"Could not verify user's login status: {e}")
30
- return False
31
-
32
- def upload_image_to_hosting(image_path: str) -> str:
33
- """
34
- Upload image to hosting service and return URL.
35
- Using multiple fallback methods for reliability.
36
- """
37
- # Open the image
38
- img = Image.open(image_path)
39
-
40
- # Method 1: Try imgbb.com (most reliable)
41
- try:
42
- buffered = BytesIO()
43
- img.save(buffered, format="PNG")
44
- buffered.seek(0)
45
- img_base64 = base64.b64encode(buffered.getvalue()).decode()
46
-
47
- response = requests.post(
48
- "https://api.imgbb.com/1/upload",
49
- data={
50
- 'key': '6d207e02198a847aa98d0a2a901485a5', # Free API key
51
- 'image': img_base64,
52
- }
53
- )
54
-
55
- if response.status_code == 200:
56
- data = response.json()
57
- if data.get('success'):
58
- return data['data']['url']
59
- except Exception as e:
60
- print(f"imgbb upload failed: {e}")
61
-
62
- # Method 2: Try 0x0.st (simple and reliable)
63
- try:
64
- buffered = BytesIO()
65
- img.save(buffered, format="PNG")
66
- buffered.seek(0)
67
-
68
- files = {'file': ('image.png', buffered, 'image/png')}
69
- response = requests.post("https://0x0.st", files=files)
70
-
71
- if response.status_code == 200:
72
- url = response.text.strip()
73
- if url.startswith('http'):
74
- return url
75
- except Exception as e:
76
- print(f"0x0.st upload failed: {e}")
77
-
78
- # Method 3: Fallback to data URI (last resort)
79
- buffered = BytesIO()
80
- img.save(buffered, format="PNG")
81
- buffered.seek(0)
82
- img_base64 = base64.b64encode(buffered.getvalue()).decode()
83
- return f"data:image/png;base64,{img_base64}"
84
-
85
- def image_to_data_uri(image_path: str) -> str:
86
- """Convert local image file to data URI format (kept for backwards compatibility)."""
87
- with open(image_path, "rb") as img_file:
88
- img_data = img_file.read()
89
- img_base64 = base64.b64encode(img_data).decode('utf-8')
90
-
91
- # Get the image format
92
- img = Image.open(image_path)
93
- img_format = img.format.lower() if img.format else 'png'
94
-
95
- # Create data URI
96
- data_uri = f"data:image/{img_format};base64,{img_base64}"
97
- return data_uri
98
-
99
- def process_output(output, progress=gr.Progress()) -> str:
100
- """Process the output from Replicate API and return a local file path."""
101
- try:
102
- # Check if output has a url attribute (FileObject)
103
- if hasattr(output, 'url'):
104
- # If url is a method, call it; if it's a property, just access it
105
- image_url = output.url() if callable(output.url) else output.url
106
- # If output is already a string URL
107
- elif isinstance(output, str):
108
- image_url = output
109
- # If output is a list of URLs
110
- elif isinstance(output, list) and len(output) > 0:
111
- # Check first item in list
112
- first_item = output[0]
113
- if hasattr(first_item, 'url'):
114
- image_url = first_item.url() if callable(first_item.url) else first_item.url
115
- else:
116
- image_url = first_item
117
- else:
118
- raise ValueError(f"Unexpected output format from Replicate: {type(output)}")
119
-
120
- # Download the image from URL
121
- response = requests.get(image_url)
122
- response.raise_for_status()
123
-
124
- # Save to temporary file
125
- img = Image.open(BytesIO(response.content))
126
- with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
127
- img.save(tmpfile.name)
128
- progress(1.0, desc="✅ Complete!")
129
- return tmpfile.name
130
-
131
- except Exception as e:
132
- print(f"Error processing output: {e}")
133
- raise ValueError(f"Failed to process output: {str(e)}")
134
-
135
- def run_single_image_logic(prompt: str, image_path: Optional[str] = None, progress=gr.Progress()) -> str:
136
- """Handles text-to-image or single image-to-image using Replicate's Nano Banana."""
137
- try:
138
- progress(0.2, desc="🎨 Preparing...")
139
-
140
- # Prepare input for Replicate API
141
- input_data = {
142
- "prompt": prompt
143
- }
144
-
145
- # If there's an input image, upload it to get a proper URL
146
- if image_path:
147
- progress(0.3, desc="📤 Uploading image...")
148
- # Upload to hosting service for proper URL
149
- image_url = upload_image_to_hosting(image_path)
150
-
151
- if image_url.startswith('http'):
152
- print(f"Image uploaded successfully: {image_url[:50]}...")
153
- else:
154
- print("Using data URI fallback")
155
-
156
- input_data["image_input"] = [image_url]
157
-
158
- progress(0.5, desc="✨ Generating...")
159
-
160
- # Run the model on Replicate
161
- output = replicate.run(
162
- "google/nano-banana",
163
- input=input_data
164
- )
165
-
166
- progress(0.8, desc="🖼️ Finalizing...")
167
-
168
- # Handle the output - output is already a URL string or FileObject
169
- if output:
170
- return process_output(output, progress)
171
- else:
172
- raise ValueError("No output received from Replicate API")
173
-
174
- except Exception as e:
175
- print(f"Error details: {e}")
176
- print(f"Error type: {type(e)}")
177
- if 'output' in locals():
178
- print(f"Output value: {output}")
179
- print(f"Output type: {type(output)}")
180
- raise gr.Error(f"Image generation failed: {str(e)[:200]}")
181
-
182
- def run_multi_image_logic(prompt: str, images: List[str], progress=gr.Progress()) -> str:
183
- """
184
- Handles multi-image editing by sending a list of images and a prompt.
185
- """
186
- if not images:
187
- raise gr.Error("Please upload at least one image in the 'Multiple Images' tab.")
188
-
189
- try:
190
- progress(0.2, desc="🎨 Preparing images...")
191
-
192
- # Upload all images to get proper URLs
193
- image_urls = []
194
- for idx, image_path in enumerate(images):
195
- if isinstance(image_path, (list, tuple)):
196
- image_path = image_path[0]
197
-
198
- progress(0.2 + (0.2 * idx / len(images)), desc=f"📤 Uploading image {idx+1}/{len(images)}...")
199
- image_url = upload_image_to_hosting(image_path)
200
- image_urls.append(image_url)
201
-
202
- # Prepare input for Replicate API with multiple images
203
- input_data = {
204
- "prompt": prompt,
205
- "image_input": image_urls
206
- }
207
-
208
- progress(0.5, desc="✨ Generating...")
209
-
210
- # Run the model on Replicate
211
- output = replicate.run(
212
- "google/nano-banana",
213
- input=input_data
214
- )
215
-
216
- progress(0.8, desc="🖼️ Finalizing...")
217
-
218
- # Handle the output using the process_output function
219
- if output:
220
- return process_output(output, progress)
221
- else:
222
- raise ValueError("No output received from Replicate API")
223
-
224
- except Exception as e:
225
- print(f"Multi-image error details: {e}")
226
- print(f"Output value: {output if 'output' in locals() else 'Not set'}")
227
- print(f"Output type: {type(output) if 'output' in locals() else 'Not set'}")
228
- raise gr.Error(f"Image generation failed: {e}")
229
-
230
- # --- Gradio App UI ---
231
- css = '''
232
- /* Header Styling */
233
- .main-header {
234
- background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
235
- padding: 2rem;
236
- border-radius: 1rem;
237
- margin-bottom: 2rem;
238
- box-shadow: 0 10px 30px rgba(0,0,0,0.1);
239
- }
240
- .header-title {
241
- font-size: 2.5rem !important;
242
- font-weight: bold;
243
- color: white;
244
- text-align: center;
245
- margin: 0 !important;
246
- text-shadow: 2px 2px 4px rgba(0,0,0,0.2);
247
- }
248
- .header-subtitle {
249
- color: rgba(255,255,255,0.9);
250
- text-align: center;
251
- margin-top: 0.5rem !important;
252
- font-size: 1.1rem;
253
- }
254
- /* Card Styling */
255
- .card {
256
- background: white;
257
- border-radius: 1rem;
258
- padding: 1.5rem;
259
- box-shadow: 0 4px 6px rgba(0,0,0,0.1);
260
- border: 1px solid rgba(0,0,0,0.05);
261
- }
262
- .dark .card {
263
- background: #1f2937;
264
- border: 1px solid #374151;
265
- }
266
- /* Tab Styling */
267
- .tabs {
268
- border-radius: 0.5rem;
269
- overflow: hidden;
270
- margin-bottom: 1rem;
271
- }
272
- .tabitem {
273
- padding: 1rem !important;
274
- }
275
- button.selected {
276
- background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
277
- color: white !important;
278
- }
279
- /* Button Styling */
280
- .generate-btn {
281
- background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
282
- border: none !important;
283
- color: white !important;
284
- font-size: 1.1rem !important;
285
- font-weight: 600 !important;
286
- padding: 0.8rem 2rem !important;
287
- border-radius: 0.5rem !important;
288
- cursor: pointer !important;
289
- transition: all 0.3s ease !important;
290
- width: 100% !important;
291
- margin-top: 1rem !important;
292
- }
293
- .generate-btn:hover {
294
- transform: translateY(-2px) !important;
295
- box-shadow: 0 10px 20px rgba(102, 126, 234, 0.4) !important;
296
- }
297
- .use-btn {
298
- background: linear-gradient(135deg, #10b981 0%, #059669 100%) !important;
299
- border: none !important;
300
- color: white !important;
301
- font-weight: 600 !important;
302
- padding: 0.6rem 1.5rem !important;
303
- border-radius: 0.5rem !important;
304
- cursor: pointer !important;
305
- transition: all 0.3s ease !important;
306
- width: 100% !important;
307
- }
308
- .use-btn:hover {
309
- transform: translateY(-1px) !important;
310
- box-shadow: 0 5px 15px rgba(16, 185, 129, 0.4) !important;
311
- }
312
- /* Input Styling */
313
- .prompt-input textarea {
314
- border-radius: 0.5rem !important;
315
- border: 2px solid #e5e7eb !important;
316
- padding: 0.8rem !important;
317
- font-size: 1rem !important;
318
- transition: border-color 0.3s ease !important;
319
- }
320
- .prompt-input textarea:focus {
321
- border-color: #667eea !important;
322
- outline: none !important;
323
- }
324
- .dark .prompt-input textarea {
325
- border-color: #374151 !important;
326
- background: #1f2937 !important;
327
- }
328
- /* Image Output Styling */
329
- #output {
330
- border-radius: 0.5rem !important;
331
- overflow: hidden !important;
332
- box-shadow: 0 4px 6px rgba(0,0,0,0.1) !important;
333
- }
334
- /* Progress Bar Styling */
335
- .progress-bar {
336
- background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
337
- }
338
- /* Examples Styling */
339
- .examples {
340
- background: #f9fafb;
341
- border-radius: 0.5rem;
342
- padding: 1rem;
343
- margin-top: 1rem;
344
- }
345
- .dark .examples {
346
- background: #1f2937;
347
- }
348
- /* Login Message Styling */
349
- .login-message {
350
- background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
351
- border-radius: 1rem;
352
- padding: 2rem;
353
- text-align: center;
354
- border: 2px solid #f59e0b;
355
- }
356
- .dark .login-message {
357
- background: linear-gradient(135deg, #7c2d12 0%, #92400e 100%);
358
- border-color: #f59e0b;
359
- }
360
- /* Emoji Animations */
361
- @keyframes bounce {
362
- 0%, 100% { transform: translateY(0); }
363
- 50% { transform: translateY(-10px); }
364
- }
365
- .emoji-icon {
366
- display: inline-block;
367
- animation: bounce 2s infinite;
368
- }
369
- /* Responsive Design */
370
- @media (max-width: 768px) {
371
- .header-title {
372
- font-size: 2rem !important;
373
- }
374
-
375
- .main-container {
376
- padding: 1rem !important;
377
- }
378
- }
379
- '''
380
-
381
- with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
382
- # Header
383
- gr.HTML('''
384
- <div class="main-header">
385
- <h1 class="header-title">
386
- 🍌 Real Nano Banana
387
- </h1>
388
- <p class="header-subtitle">
389
- AI Image Generator powered by Google Nano Banana
390
- </p>
391
- <div style="display: flex; justify-content: center; align-items: center; gap: 10px; margin-top: 20px;">
392
- <a href="https://huggingface.co/spaces/openfree/Nano-Banana-Upscale" target="_blank">
393
- <img src="https://img.shields.io/static/v1?label=NANO%20BANANA&message=UPSCALE&color=%230000ff&labelColor=%23800080&logo=GOOGLE&logoColor=white&style=for-the-badge" alt="Nano Banana Upscale">
394
- </a>
395
- <a href="https://huggingface.co/spaces/openfree/Free-Nano-Banana" target="_blank">
396
- <img src="https://img.shields.io/static/v1?label=NANO%20BANANA&message=FREE&color=%230000ff&labelColor=%23800080&logo=GOOGLE&logoColor=white&style=for-the-badge" alt="Free Nano Banana">
397
- </a>
398
- <a href="https://huggingface.co/spaces/aiqtech/Nano-Banana-API" target="_blank">
399
- <img src="https://img.shields.io/static/v1?label=NANO%20BANANA&message=API&color=%230000ff&labelColor=%23800080&logo=GOOGLE&logoColor=white&style=for-the-badge" alt="Nano Banana API">
400
- </a>
401
- <a href="https://discord.gg/openfreeai" target="_blank">
402
- <img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord Openfree AI">
403
- </a>
404
- </div>
405
- </div>
406
- ''')
407
-
408
- # Login Notice
409
- gr.HTML('''
410
- <div style="background: linear-gradient(135deg, #e0f2fe 0%, #bae6fd 100%);
411
- border-radius: 0.5rem; padding: 1rem; margin-bottom: 1.5rem;
412
- border-left: 4px solid #0284c7;">
413
- <p style="margin: 0; color: #075985; font-weight: 600;">
414
- 🔐 Please sign in with your Hugging Face account to use this service.
415
- </p>
416
- </div>
417
- ''')
418
-
419
- login_message = gr.Markdown(visible=False)
420
- main_interface = gr.Column(visible=False, elem_classes="main-container")
421
-
422
- with main_interface:
423
- with gr.Row():
424
- with gr.Column(scale=1):
425
- gr.HTML('<div class="card">')
426
-
427
- # Mode Selection
428
- gr.HTML('<h3 style="margin-top: 0;">📸 Select Mode</h3>')
429
- active_tab_state = gr.State(value="single")
430
-
431
- with gr.Tabs(elem_classes="tabs") as tabs:
432
- with gr.TabItem("🖼️ Single Image", id="single") as single_tab:
433
- image_input = gr.Image(
434
- type="filepath",
435
- label="Input Image (Optional)",
436
- elem_classes="image-input"
437
- )
438
- gr.HTML('''
439
- <p style="text-align: center; color: #6b7280; font-size: 0.9rem; margin-top: 0.5rem;">
440
- 💡 Leave empty for text-to-image generation
441
- </p>
442
- ''')
443
-
444
- with gr.TabItem("🎨 Multiple Images", id="multiple") as multi_tab:
445
- gallery_input = gr.Gallery(
446
- label="Input Images (Max 2 images)",
447
- file_types=["image"],
448
- elem_classes="gallery-input"
449
- )
450
- gr.HTML('''
451
- <p style="text-align: center; color: #6b7280; font-size: 0.9rem; margin-top: 0.5rem;">
452
- 💡 Upload up to 2 images for combination/editing
453
- </p>
454
- ''')
455
-
456
- # Prompt Input
457
- gr.HTML('<h3>✍️ Prompt</h3>')
458
- prompt_input = gr.Textbox(
459
- label="",
460
- info="Describe what you want the AI to generate",
461
- placeholder="e.g., A delicious pizza, a cat in space, futuristic cityscape...",
462
- lines=3,
463
- elem_classes="prompt-input"
464
- )
465
-
466
- # Generate Button
467
- generate_button = gr.Button(
468
- "🚀 Generate",
469
- variant="primary",
470
- elem_classes="generate-btn"
471
- )
472
-
473
- # Examples
474
- with gr.Accordion("💡 Example Prompts", open=False):
475
- gr.Examples(
476
- examples=[
477
- ["A delicious looking pizza with melting cheese"],
478
- ["A cat in a spacesuit walking on the moon surface"],
479
- ["Cyberpunk city at night with neon lights"],
480
- ["Japanese garden with cherry blossoms in spring"],
481
- ["Fantasy wizard tower in a magical world"],
482
- ["Make the scene more dramatic and cinematic"],
483
- ["Transform this into a watercolor painting style"],
484
- ],
485
- inputs=prompt_input
486
- )
487
-
488
- gr.HTML('</div>')
489
-
490
- with gr.Column(scale=1):
491
- gr.HTML('<div class="card">')
492
- gr.HTML('<h3 style="margin-top: 0;">🎨 Generated Result</h3>')
493
-
494
- output_image = gr.Image(
495
- label="",
496
- interactive=False,
497
- elem_id="output"
498
- )
499
-
500
- use_image_button = gr.Button(
501
- "♻️ Use this image for next edit",
502
- elem_classes="use-btn",
503
- visible=False
504
- )
505
-
506
- # Tips
507
- gr.HTML('''
508
- <div style="background: #f0f9ff; border-radius: 0.5rem; padding: 1rem; margin-top: 1rem;">
509
- <h4 style="margin-top: 0; color: #0369a1;">💡 Tips</h4>
510
- <ul style="margin: 0; padding-left: 1.5rem; color: #0c4a6e;">
511
- <li>Use specific and detailed prompts for better results</li>
512
- <li>You can reuse generated images for iterative improvements</li>
513
- <li>Multiple image mode supports up to 2 images for combination</li>
514
- <li>English prompts tend to produce better results</li>
515
- </ul>
516
- </div>
517
- ''')
518
-
519
- gr.HTML('</div>')
520
-
521
- # Footer
522
- gr.HTML('''
523
- <div style="text-align: center; margin-top: 2rem; padding: 1rem;
524
- border-top: 1px solid #e5e7eb;">
525
- <p style="color: #6b7280;">
526
- Made with 💜 using Replicate API | Powered by Google Nano Banana
527
- </p>
528
- </div>
529
- ''')
530
-
531
- login_button = gr.LoginButton()
532
-
533
- # --- Event Handlers ---
534
- def unified_generator(
535
- prompt: str,
536
- single_image: Optional[str],
537
- multi_images: Optional[List[str]],
538
- active_tab: str,
539
- oauth_token: Optional[gr.OAuthToken] = None,
540
- ):
541
- if not verify_login_status(oauth_token):
542
- raise gr.Error("Login required. Please click the 'Sign in with Hugging Face' button at the top.")
543
- if not prompt:
544
- raise gr.Error("Please enter a prompt.")
545
- if active_tab == "multiple" and multi_images:
546
- result = run_multi_image_logic(prompt, multi_images)
547
- else:
548
- result = run_single_image_logic(prompt, single_image)
549
- return result, gr.update(visible=True)
550
-
551
- single_tab.select(lambda: "single", None, active_tab_state)
552
- multi_tab.select(lambda: "multiple", None, active_tab_state)
553
-
554
- generate_button.click(
555
- unified_generator,
556
- inputs=[prompt_input, image_input, gallery_input, active_tab_state],
557
- outputs=[output_image, use_image_button],
558
- )
559
-
560
- use_image_button.click(
561
- lambda img: (img, gr.update(visible=False)),
562
- inputs=[output_image],
563
- outputs=[image_input, use_image_button]
564
- )
565
-
566
- # --- Access Control Logic ---
567
- def control_access(
568
- profile: Optional[gr.OAuthProfile] = None,
569
- oauth_token: Optional[gr.OAuthToken] = None
570
- ):
571
- if not profile:
572
- return gr.update(visible=False), gr.update(visible=False)
573
- if verify_login_status(oauth_token):
574
- return gr.update(visible=True), gr.update(visible=False)
575
- else:
576
- message = '''
577
- <div class="login-message">
578
- <h2>🔐 Login Required</h2>
579
- <p style="font-size: 1.1rem; margin: 1rem 0;">
580
- Please sign in with your Hugging Face account to use this AI image generation tool.
581
- </p>
582
- <p style="margin: 1rem 0;">
583
- After logging in, you can access:
584
- </p>
585
- <ul style="text-align: left; display: inline-block; margin: 1rem 0;">
586
- <li>🚀 High-quality image generation via Google Nano Banana</li>
587
- <li>⚡ Fast image generation and editing</li>
588
- <li>🎨 Text-to-image conversion</li>
589
- <li>🔧 Multiple image editing and combining</li>
590
- </ul>
591
- <p style="margin-top: 1.5rem; font-weight: bold;">
592
- Click the "Sign in with Hugging Face" button at the top to get started!
593
- </p>
594
- </div>
595
- '''
596
- return gr.update(visible=False), gr.update(visible=True, value=message)
597
-
598
- demo.load(control_access, inputs=None, outputs=[main_interface, login_message])
599
-
600
- if __name__ == "__main__":
601
- demo.queue(max_size=None, default_concurrency_limit=None)
602
- demo.launch()