Spaces:
Running
Running
File size: 1,892 Bytes
23c88d4 0d01ec2 f05802f 7185b69 696277a 1fb9abf 696277a a8076e2 696277a 1238274 9c77d88 f05802f fa183af 0d01ec2 240671f 0d01ec2 a8076e2 a5272ad 4db4956 f05802f 4db4956 0d01ec2 f05802f bc387e2 0d01ec2 a5272ad 4db4956 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import gradio as gr
import yfinance as yf
from prophet import Prophet
import pandas as pd
import plotly.graph_objects as go
def download_data(ticker, start_date='2010-01-01'):
data = yf.download(ticker, start=start_date)
if data.empty:
raise ValueError(f"No data returned for {ticker}")
data.reset_index(inplace=True)
if 'Adj Close' in data.columns:
data = data[['Date', 'Adj Close']].copy()
data.rename(columns={'Date': 'ds', 'Adj Close': 'y'}, inplace=True)
else:
raise ValueError("Expected 'Adj Close' in columns")
data['ds'] = pd.to_datetime(data['ds'])
return data
def predict_future_prices(ticker, periods=1825):
data = download_data(ticker)
model = Prophet(daily_seasonality=False, weekly_seasonality=True, yearly_seasonality=True)
model.fit(data)
future = model.make_future_dataframe(periods=periods, freq='D')
forecast = model.predict(future)
fig = go.Figure()
fig.add_trace(go.Scatter(x=data['ds'], y=data['y'], mode='lines', name='Actual (Black)', line=dict(color='black')))
fig.add_trace(go.Scatter(x=forecast['ds'], y=forecast['yhat'], mode='lines', name='Forecast (Blue)'))
# Make sure to return both the figure and the forecast data
return fig, forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]
with gr.Blocks() as app:
with gr.Row():
ticker_input = gr.Textbox(value="AAPL", label="Enter Stock Ticker for Forecast")
periods_input = gr.Number(value=1825, label="Forecast Period (days)")
forecast_button = gr.Button("Generate Forecast")
forecast_chart = gr.Plot(label="Forecast Chart")
forecast_data = gr.Dataframe(label="Forecast Data")
forecast_button.click(
fn=predict_future_prices,
inputs=[ticker_input, periods_input],
outputs=[forecast_chart, forecast_data]
)
app.launch()
|