Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,9 +8,10 @@ import plotly.graph_objects as go
|
|
8 |
|
9 |
def predict_future_prices(ticker, periods=1825):
|
10 |
data = download_data(ticker)
|
11 |
-
|
12 |
def download_data(ticker, start_date='2010-01-01'):
|
13 |
-
"""
|
|
|
|
|
14 |
data = yf.download(ticker, start=start_date)
|
15 |
if data.empty:
|
16 |
raise ValueError(f"No data returned for {ticker}")
|
@@ -24,31 +25,37 @@ def download_data(ticker, start_date='2010-01-01'):
|
|
24 |
|
25 |
def predict_future_prices(ticker, periods=1825):
|
26 |
data = download_data(ticker)
|
|
|
27 |
# Prophet 모델 생성 및 학습
|
28 |
model_prophet = Prophet(daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=True)
|
29 |
model_prophet.fit(data)
|
|
|
30 |
# 미래 데이터 프레임 생성 및 예측
|
31 |
future = model_prophet.make_future_dataframe(periods=periods, freq='D')
|
32 |
forecast_prophet = model_prophet.predict(future)
|
|
|
33 |
# Linear Regression 모델 생성 및 학습
|
34 |
model_lr = LinearRegression()
|
35 |
X = pd.to_numeric(pd.Series(range(len(data))))
|
36 |
y = data['y'].values
|
37 |
model_lr.fit(X.values.reshape(-1, 1), y)
|
|
|
38 |
# 미래 데이터 프레임 생성 및 예측
|
39 |
future_dates = pd.date_range(start=data['ds'].iloc[-1], periods=periods+1, freq='D')[1:]
|
40 |
future_lr = pd.DataFrame({'ds': future_dates})
|
41 |
future_lr['ds'] = future_lr['ds'].dt.strftime('%Y-%m-%d')
|
42 |
X_future = pd.to_numeric(pd.Series(range(len(data), len(data) + len(future_lr))))
|
43 |
future_lr['yhat'] = model_lr.predict(X_future.values.reshape(-1, 1))
|
|
|
44 |
# 예측 결과 그래프 생성
|
45 |
forecast_prophet['ds'] = forecast_prophet['ds'].dt.strftime('%Y-%m-%d')
|
46 |
fig = go.Figure()
|
47 |
fig.add_trace(go.Scatter(x=forecast_prophet['ds'], y=forecast_prophet['yhat'], mode='lines', name='Prophet Forecast (Blue)'))
|
48 |
fig.add_trace(go.Scatter(x=future_lr['ds'], y=future_lr['yhat'], mode='lines', name='Linear Regression Forecast (Red)', line=dict(color='red')))
|
49 |
fig.add_trace(go.Scatter(x=data['ds'], y=data['y'], mode='lines', name='Actual (Black)', line=dict(color='black')))
|
|
|
50 |
return fig, forecast_prophet[['ds', 'yhat', 'yhat_lower', 'yhat_upper']], future_lr[['ds', 'yhat']]
|
51 |
-
|
52 |
css = """footer { visibility: hidden; }"""
|
53 |
|
54 |
with gr.Blocks(css=css) as app:
|
|
|
8 |
|
9 |
def predict_future_prices(ticker, periods=1825):
|
10 |
data = download_data(ticker)
|
|
|
11 |
def download_data(ticker, start_date='2010-01-01'):
|
12 |
+
"""
|
13 |
+
주식 데이터를 다운로드하고 포맷을 조정하는 함수
|
14 |
+
"""
|
15 |
data = yf.download(ticker, start=start_date)
|
16 |
if data.empty:
|
17 |
raise ValueError(f"No data returned for {ticker}")
|
|
|
25 |
|
26 |
def predict_future_prices(ticker, periods=1825):
|
27 |
data = download_data(ticker)
|
28 |
+
|
29 |
# Prophet 모델 생성 및 학습
|
30 |
model_prophet = Prophet(daily_seasonality=False, weekly_seasonality=False, yearly_seasonality=True)
|
31 |
model_prophet.fit(data)
|
32 |
+
|
33 |
# 미래 데이터 프레임 생성 및 예측
|
34 |
future = model_prophet.make_future_dataframe(periods=periods, freq='D')
|
35 |
forecast_prophet = model_prophet.predict(future)
|
36 |
+
|
37 |
# Linear Regression 모델 생성 및 학습
|
38 |
model_lr = LinearRegression()
|
39 |
X = pd.to_numeric(pd.Series(range(len(data))))
|
40 |
y = data['y'].values
|
41 |
model_lr.fit(X.values.reshape(-1, 1), y)
|
42 |
+
|
43 |
# 미래 데이터 프레임 생성 및 예측
|
44 |
future_dates = pd.date_range(start=data['ds'].iloc[-1], periods=periods+1, freq='D')[1:]
|
45 |
future_lr = pd.DataFrame({'ds': future_dates})
|
46 |
future_lr['ds'] = future_lr['ds'].dt.strftime('%Y-%m-%d')
|
47 |
X_future = pd.to_numeric(pd.Series(range(len(data), len(data) + len(future_lr))))
|
48 |
future_lr['yhat'] = model_lr.predict(X_future.values.reshape(-1, 1))
|
49 |
+
|
50 |
# 예측 결과 그래프 생성
|
51 |
forecast_prophet['ds'] = forecast_prophet['ds'].dt.strftime('%Y-%m-%d')
|
52 |
fig = go.Figure()
|
53 |
fig.add_trace(go.Scatter(x=forecast_prophet['ds'], y=forecast_prophet['yhat'], mode='lines', name='Prophet Forecast (Blue)'))
|
54 |
fig.add_trace(go.Scatter(x=future_lr['ds'], y=future_lr['yhat'], mode='lines', name='Linear Regression Forecast (Red)', line=dict(color='red')))
|
55 |
fig.add_trace(go.Scatter(x=data['ds'], y=data['y'], mode='lines', name='Actual (Black)', line=dict(color='black')))
|
56 |
+
|
57 |
return fig, forecast_prophet[['ds', 'yhat', 'yhat_lower', 'yhat_upper']], future_lr[['ds', 'yhat']]
|
58 |
+
|
59 |
css = """footer { visibility: hidden; }"""
|
60 |
|
61 |
with gr.Blocks(css=css) as app:
|