Spaces:
Running
Running
import gradio as gr | |
import yfinance as yf | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import plotly.graph_objects as go | |
from plotly.subplots import make_subplots | |
import datetime as dt | |
import json | |
from io import StringIO | |
# Helper functions for data processing | |
def format_large_number(num): | |
"""Format large numbers to K, M, B, T""" | |
if num is None or pd.isna(num): | |
return "N/A" | |
if isinstance(num, str): | |
return num | |
if abs(num) >= 1_000_000_000_000: | |
return f"{num / 1_000_000_000_000:.2f}T" | |
elif abs(num) >= 1_000_000_000: | |
return f"{num / 1_000_000_000:.2f}B" | |
elif abs(num) >= 1_000_000: | |
return f"{num / 1_000_000:.2f}M" | |
elif abs(num) >= 1_000: | |
return f"{num / 1_000:.2f}K" | |
else: | |
return f"{num:.2f}" | |
def get_ticker_info(ticker_symbol): | |
"""Get basic information about a ticker""" | |
try: | |
ticker = yf.Ticker(ticker_symbol) | |
info = ticker.info | |
# Create a more readable format | |
important_info = { | |
"Name": info.get("shortName", "N/A"), | |
"Sector": info.get("sector", "N/A"), | |
"Industry": info.get("industry", "N/A"), | |
"Country": info.get("country", "N/A"), | |
"Market Cap": format_large_number(info.get("marketCap", "N/A")), | |
"Current Price": info.get("currentPrice", info.get("regularMarketPrice", "N/A")), | |
"52 Week High": info.get("fiftyTwoWeekHigh", "N/A"), | |
"52 Week Low": info.get("fiftyTwoWeekLow", "N/A"), | |
"Website": info.get("website", "N/A"), | |
"Business Summary": info.get("longBusinessSummary", "N/A") | |
} | |
# Convert to formatted string | |
info_str = "" | |
for key, value in important_info.items(): | |
info_str += f"**{key}**: {value}\n\n" | |
return info_str | |
except Exception as e: | |
return f"Error retrieving ticker info: {str(e)}" | |
def get_historical_data(ticker_symbol, period, interval): | |
"""Get historical price data and create a plotly chart""" | |
try: | |
ticker = yf.Ticker(ticker_symbol) | |
history = ticker.history(period=period, interval=interval) | |
if history.empty: | |
return "No historical data available for this ticker", None | |
# Create Plotly figure | |
fig = go.Figure() | |
fig.add_trace(go.Candlestick( | |
x=history.index, | |
open=history['Open'], | |
high=history['High'], | |
low=history['Low'], | |
close=history['Close'], | |
name='Price' | |
)) | |
# Add volume as bar chart | |
fig.add_trace(go.Bar( | |
x=history.index, | |
y=history['Volume'], | |
name='Volume', | |
yaxis='y2', | |
marker_color='rgba(0, 100, 80, 0.4)' | |
)) | |
# Layout with secondary y-axis | |
fig.update_layout( | |
title=f'{ticker_symbol} Price History', | |
yaxis_title='Price', | |
yaxis2=dict( | |
title='Volume', | |
overlaying='y', | |
side='right', | |
showgrid=False | |
), | |
xaxis_rangeslider_visible=False, | |
height=500 | |
) | |
return f"Successfully retrieved historical data for {ticker_symbol}", fig | |
except Exception as e: | |
return f"Error retrieving historical data: {str(e)}", None | |
def get_financial_data(ticker_symbol, statement_type, period_type): | |
"""Get financial statements data""" | |
try: | |
ticker = yf.Ticker(ticker_symbol) | |
if statement_type == "Income Statement": | |
if period_type == "Annual": | |
data = ticker.income_stmt | |
else: # Quarterly | |
data = ticker.quarterly_income_stmt | |
elif statement_type == "Balance Sheet": | |
if period_type == "Annual": | |
data = ticker.balance_sheet | |
else: # Quarterly | |
data = ticker.quarterly_balance_sheet | |
elif statement_type == "Cash Flow": | |
if period_type == "Annual": | |
data = ticker.cashflow | |
else: # Quarterly | |
data = ticker.quarterly_cashflow | |
if data is None or data.empty: | |
return f"No {statement_type} data available for {ticker_symbol}" | |
# Format the DataFrame for display | |
data = data.fillna("N/A") | |
# Format date columns to be more readable | |
data.columns = [col.strftime('%Y-%m-%d') if hasattr(col, 'strftime') else str(col) for col in data.columns] | |
# HTML representation will be more readable in the UI | |
return data.to_html(classes="table table-striped") | |
except Exception as e: | |
return f"Error retrieving financial data: {str(e)}" | |
def get_company_news(ticker_symbol): | |
"""Get latest news for the company""" | |
try: | |
ticker = yf.Ticker(ticker_symbol) | |
news = ticker.news | |
if not news: | |
return "No recent news available for this ticker" | |
# Format news items | |
formatted_news = "" | |
for i, item in enumerate(news[:5]): # Show top 5 news items | |
# Extract from nested content structure if present | |
news_item = item.get('content', item) | |
# Get title | |
title = news_item.get('title', 'No title') | |
# Get publisher | |
publisher = "Unknown publisher" | |
if 'provider' in news_item and isinstance(news_item['provider'], dict): | |
publisher = news_item['provider'].get('displayName', 'Unknown publisher') | |
# Get link | |
link = "#" | |
if 'clickThroughUrl' in news_item and isinstance(news_item['clickThroughUrl'], dict): | |
link = news_item['clickThroughUrl'].get('url', '#') | |
elif 'canonicalUrl' in news_item and isinstance(news_item['canonicalUrl'], dict): | |
link = news_item['canonicalUrl'].get('url', '#') | |
# Get date | |
publish_date = 'Unknown date' | |
if 'pubDate' in news_item: | |
publish_date = news_item['pubDate'] | |
formatted_news += f"### {i+1}. {title}\n\n" | |
formatted_news += f"**Source**: {publisher} | **Date**: {publish_date}\n\n" | |
formatted_news += f"**Link**: [Read full article]({link})\n\n" | |
# Add description if available | |
if 'description' in news_item: | |
description = news_item['description'] | |
# Limit description length and strip HTML tags | |
if len(description) > 200: | |
description = description[:200] + "..." | |
formatted_news += f"{description}\n\n" | |
formatted_news += "---\n\n" | |
return formatted_news | |
except Exception as e: | |
return f"Error retrieving news: {str(e)}" | |
def get_analyst_recommendations(ticker_symbol): | |
"""Get analyst recommendations""" | |
try: | |
ticker = yf.Ticker(ticker_symbol) | |
recommendations = ticker.recommendations | |
if recommendations is None or recommendations.empty: | |
return "No analyst recommendations available for this ticker" | |
# Create a figure for visualization | |
fig = plt.figure(figsize=(10, 6)) | |
# Count occurrences of each recommendation | |
rec_counts = recommendations['To Grade'].value_counts() | |
# Create a pie chart | |
plt.pie(rec_counts, labels=rec_counts.index, autopct='%1.1f%%', | |
shadow=True, startangle=90, colors=['#ff9999','#66b3ff','#99ff99','#ffcc99','#c2c2f0']) | |
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle | |
plt.title(f'Analyst Recommendations for {ticker_symbol}') | |
return f"Found {len(recommendations)} analyst recommendations for {ticker_symbol}", fig | |
except Exception as e: | |
return f"Error retrieving analyst recommendations: {str(e)}", None | |
def get_options_data(ticker_symbol, expiration_date=None): | |
"""Get options chain data for the ticker""" | |
try: | |
ticker = yf.Ticker(ticker_symbol) | |
# Get available expiration dates | |
expirations = ticker.options | |
if not expirations: | |
return "No options data available for this ticker", None | |
# If no expiration date is provided or the provided one is invalid, use the first available | |
if expiration_date is None or expiration_date not in expirations: | |
expiration_date = expirations[0] | |
# Get options chain for the selected expiration date | |
options = ticker.option_chain(expiration_date) | |
calls = options.calls | |
puts = options.puts | |
# Prepare data for visualization | |
strike_prices = sorted(list(set(calls['strike'].tolist() + puts['strike'].tolist()))) | |
call_volumes = [] | |
put_volumes = [] | |
for strike in strike_prices: | |
call_vol = calls[calls['strike'] == strike]['volume'].sum() | |
put_vol = puts[puts['strike'] == strike]['volume'].sum() | |
call_volumes.append(call_vol) | |
put_volumes.append(put_vol) | |
# Create figure for visualization | |
fig = plt.figure(figsize=(12, 6)) | |
# Plot the data | |
plt.bar(np.array(strike_prices) - 0.2, call_volumes, width=0.4, label='Calls', color='green', alpha=0.6) | |
plt.bar(np.array(strike_prices) + 0.2, put_volumes, width=0.4, label='Puts', color='red', alpha=0.6) | |
plt.xlabel('Strike Price') | |
plt.ylabel('Volume') | |
plt.title(f'Options Volume for {ticker_symbol} (Expiry: {expiration_date})') | |
plt.legend() | |
plt.grid(True, alpha=0.3) | |
# Format for readability | |
current_price = ticker.info.get('regularMarketPrice', ticker.info.get('currentPrice', None)) | |
if current_price: | |
plt.axvline(x=current_price, color='blue', linestyle='--', label=f'Current Price: {current_price}') | |
plt.legend() | |
# Create summary table data | |
summary = f""" | |
### Options Summary for {ticker_symbol} (Expiry: {expiration_date}) | |
**Available Expiration Dates:** {', '.join(expirations)} | |
#### Calls Summary: | |
- Count: {len(calls)} | |
- Total Volume: {calls['volume'].sum():,} | |
- Average Implied Volatility: {calls['impliedVolatility'].mean():.2%} | |
#### Puts Summary: | |
- Count: {len(puts)} | |
- Total Volume: {puts['volume'].sum():,} | |
- Average Implied Volatility: {puts['impliedVolatility'].mean():.2%} | |
""" | |
return summary, fig | |
except Exception as e: | |
return f"Error retrieving options data: {str(e)}", None | |
def get_institutional_holders(ticker_symbol): | |
"""Get institutional holders of the stock""" | |
try: | |
ticker = yf.Ticker(ticker_symbol) | |
holders = ticker.institutional_holders | |
if holders is None or holders.empty: | |
return "No institutional holders data available for this ticker", None | |
# Create figure for visualization | |
fig = plt.figure(figsize=(12, 6)) | |
# Sort by percentage held | |
holders = holders.sort_values(by='% Out', ascending=False) | |
# Take top 10 holders for visualization | |
top_holders = holders.head(10) | |
# Plot the data | |
plt.barh(top_holders['Holder'], top_holders['% Out'] * 100) | |
plt.xlabel('Percentage Held (%)') | |
plt.ylabel('Institution') | |
plt.title(f'Top Institutional Holders of {ticker_symbol}') | |
plt.grid(True, alpha=0.3) | |
# Format x-axis as percentage | |
plt.gca().xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: f'{x:.1f}%')) | |
# Format the DataFrame for display | |
holders_html = holders.to_html(classes="table table-striped") | |
return holders_html, fig | |
except Exception as e: | |
return f"Error retrieving institutional holders: {str(e)}", None | |
def get_sector_industry_info(ticker_symbol): | |
"""Get sector and industry information for the ticker""" | |
try: | |
ticker = yf.Ticker(ticker_symbol) | |
info = ticker.info | |
sector_key = info.get('sectorKey') | |
industry_key = info.get('industryKey') | |
if not sector_key or not industry_key: | |
return "Sector or industry information not available for this ticker" | |
try: | |
# Get sector information | |
sector = yf.Sector(sector_key) | |
sector_info = f""" | |
### Sector Information | |
**Name:** {sector.name} | |
**Key:** {sector.key} | |
**Symbol:** {sector.symbol} | |
#### Overview | |
{sector.overview} | |
#### Top Companies in {sector.name} Sector | |
""" | |
for company in sector.top_companies[:5]: # Show top 5 companies | |
sector_info += f"- {company.get('name', 'N/A')} ({company.get('symbol', 'N/A')})\n" | |
# Get industry information | |
industry = yf.Industry(industry_key) | |
industry_info = f""" | |
### Industry Information | |
**Name:** {industry.name} | |
**Key:** {industry.key} | |
**Sector:** {industry.sector_name} | |
#### Top Performing Companies in {industry.name} | |
""" | |
for company in industry.top_performing_companies[:5]: # Show top 5 companies | |
industry_info += f"- {company.get('name', 'N/A')} ({company.get('symbol', 'N/A')})\n" | |
return sector_info + industry_info | |
except Exception as e: | |
return f"Error retrieving sector/industry details: {str(e)}" | |
except Exception as e: | |
return f"Error retrieving sector/industry information: {str(e)}" | |
def search_stocks(query, max_results=10): | |
"""Search for stocks using the YF Search API""" | |
try: | |
# First try with the standard approach | |
search_results = yf.Search(query, max_results=max_results) | |
quotes = search_results.quotes | |
if not quotes: | |
return "No search results found" | |
# Format the results | |
formatted_results = "### Search Results\n\n" | |
for quote in quotes: | |
symbol = quote.get('symbol', 'N/A') | |
name = quote.get('shortname', quote.get('longname', 'N/A')) | |
exchange = quote.get('exchange', 'N/A') | |
quote_type = quote.get('quoteType', 'N/A').capitalize() | |
formatted_results += f"**{symbol}** - {name}\n" | |
formatted_results += f"Exchange: {exchange} | Type: {quote_type}\n\n" | |
return formatted_results | |
except AttributeError as e: | |
if "has no attribute 'update'" in str(e): | |
# Alternative: Use the Ticker directly for basic information | |
try: | |
# If search fails, try to get info directly for the symbol | |
if len(query.strip()) <= 5: # Likely a symbol | |
ticker = yf.Ticker(query.strip()) | |
info = ticker.info | |
formatted_results = "### Direct Ticker Results\n\n" | |
formatted_results += f"**{query.strip()}** - {info.get('shortName', 'N/A')}\n" | |
formatted_results += f"Exchange: {info.get('exchange', 'N/A')} | " | |
formatted_results += f"Type: {info.get('quoteType', 'N/A').capitalize()}\n\n" | |
return formatted_results | |
else: | |
return f"Search functionality unavailable due to version compatibility issue. If you know the exact ticker symbol, try entering it in the Single Ticker Analysis tab." | |
except: | |
return f"Search functionality unavailable due to version compatibility issue. If you know the exact ticker symbol, try entering it in the Single Ticker Analysis tab." | |
else: | |
return f"Error searching stocks: {str(e)}" | |
except Exception as e: | |
return f"Error searching stocks: {str(e)}" | |
def get_multi_ticker_comparison(ticker_symbols, period="1y"): | |
"""Compare multiple tickers in a single chart""" | |
try: | |
if not ticker_symbols: | |
return "Please enter at least one ticker symbol", None | |
# Split input string into list of ticker symbols | |
tickers = [t.strip() for t in ticker_symbols.split() if t.strip()] | |
if not tickers: | |
return "Please enter at least one ticker symbol", None | |
# Download data for all tickers | |
data = yf.download(tickers, period=period, group_by='ticker') | |
if data.empty: | |
return "No data available for the provided tickers", None | |
# For a single ticker, the structure is different | |
if len(tickers) == 1: | |
ticker = tickers[0] | |
price_data = data['Close'] | |
price_data.name = ticker | |
price_data = pd.DataFrame(price_data) | |
else: | |
# Extract closing prices for each ticker | |
price_data = pd.DataFrame() | |
for ticker in tickers: | |
try: | |
if (ticker, 'Close') in data.columns: | |
price_data[ticker] = data[ticker]['Close'] | |
except: | |
continue | |
if price_data.empty: | |
return "Could not retrieve closing price data for the provided tickers", None | |
# Normalize the data to start at 100 for fair comparison | |
normalized_data = price_data.copy() | |
for col in normalized_data.columns: | |
normalized_data[col] = normalized_data[col] / normalized_data[col].iloc[0] * 100 | |
# Create figure for visualization | |
fig = plt.figure(figsize=(12, 6)) | |
for col in normalized_data.columns: | |
plt.plot(normalized_data.index, normalized_data[col], label=col) | |
plt.xlabel('Date') | |
plt.ylabel('Normalized Price (Base = 100)') | |
plt.title(f'Comparative Performance ({period})') | |
plt.legend() | |
plt.grid(True, alpha=0.3) | |
# Calculate performance metrics | |
performance = {} | |
for ticker in price_data.columns: | |
start_price = price_data[ticker].iloc[0] | |
end_price = price_data[ticker].iloc[-1] | |
pct_change = (end_price - start_price) / start_price * 100 | |
performance[ticker] = pct_change | |
# Create a summary of the performance | |
summary = "### Performance Summary\n\n" | |
for ticker, pct in sorted(performance.items(), key=lambda x: x[1], reverse=True): | |
summary += f"**{ticker}**: {pct:.2f}%\n\n" | |
return summary, fig | |
except Exception as e: | |
return f"Error comparing tickers: {str(e)}", None | |
def get_market_status(): | |
"""Get current market status and summary""" | |
try: | |
# Get US market status | |
us_market = yf.Market("US") | |
status = us_market.status | |
if not status: | |
return "Unable to retrieve market status" | |
# Format the response | |
market_info = "### Market Status\n\n" | |
market_state = status.get('marketState', 'Unknown') | |
trading_status = "Open" if market_state == "REGULAR" else "Closed" | |
market_info += f"**US Market Status:** {trading_status} ({market_state})\n\n" | |
# Get summary for different markets | |
markets = ["US", "EUROPE", "ASIA", "CRYPTOCURRENCIES"] | |
for market_id in markets: | |
try: | |
market = yf.Market(market_id) | |
summary = market.summary | |
if summary is None: | |
market_info += f"### {market_id} Market Summary\n\nNo data available\n\n---\n\n" | |
continue | |
market_info += f"### {market_id} Market Summary\n\n" | |
# Make sure we handle the summary data correctly, regardless of its type | |
summary_items = [] | |
if isinstance(summary, list): | |
summary_items = summary[:5] # Get first 5 items | |
elif hasattr(summary, '__getitem__'): | |
try: | |
summary_items = summary[:5] # Try to get first 5 items | |
except: | |
# If slicing fails, try to convert to list first | |
try: | |
summary_items = list(summary)[:5] | |
except: | |
summary_items = [] | |
# Display market indices | |
if not summary_items: | |
market_info += "No summary data available\n\n" | |
else: | |
for item in summary_items: | |
if not isinstance(item, dict): | |
continue | |
symbol = item.get('symbol', 'N/A') | |
name = item.get('shortName', item.get('longName', 'N/A')) | |
price = item.get('regularMarketPrice', 'N/A') | |
change = item.get('regularMarketChangePercent', 0) | |
# Format change with color indicator | |
change_text = f"{change:.2f}%" if isinstance(change, (int, float)) else change | |
if isinstance(change, (int, float)): | |
if change > 0: | |
change_text = f"🟢 +{change_text}" | |
elif change < 0: | |
change_text = f"🔴 {change_text}" | |
market_info += f"**{name} ({symbol}):** {price} ({change_text})\n\n" | |
market_info += "---\n\n" | |
except Exception as e: | |
market_info += f"### {market_id} Market Summary\n\nError retrieving {market_id} market summary: {str(e)}\n\n---\n\n" | |
return market_info | |
except Exception as e: | |
return f"Error retrieving market status: {str(e)}" | |
# Gradio UI components | |
with gr.Blocks(title="YFinance Explorer") as app: | |
gr.Markdown("# YFinance Explorer\nA comprehensive tool to test all features of the yfinance library") | |
with gr.Tab("Single Ticker Analysis"): | |
with gr.Row(): | |
ticker_input = gr.Textbox(label="Enter Ticker Symbol", placeholder="e.g. AAPL, MSFT, GOOG", value="AAPL") | |
ticker_submit = gr.Button("Analyze") | |
with gr.Tabs(): | |
with gr.Tab("Overview"): | |
ticker_info_output = gr.Markdown() | |
with gr.Tab("Price History"): | |
with gr.Row(): | |
period_dropdown = gr.Dropdown( | |
choices=["1d", "5d", "1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"], | |
value="1y", | |
label="Period" | |
) | |
interval_dropdown = gr.Dropdown( | |
choices=["1m", "2m", "5m", "15m", "30m", "60m", "90m", "1h", "1d", "5d", "1wk", "1mo", "3mo"], | |
value="1d", | |
label="Interval" | |
) | |
history_status = gr.Markdown() | |
history_plot = gr.Plot() | |
with gr.Tab("Financials"): | |
with gr.Row(): | |
statement_dropdown = gr.Dropdown( | |
choices=["Income Statement", "Balance Sheet", "Cash Flow"], | |
value="Income Statement", | |
label="Financial Statement" | |
) | |
period_type_dropdown = gr.Dropdown( | |
choices=["Annual", "Quarterly"], | |
value="Annual", | |
label="Period Type" | |
) | |
financial_data_output = gr.HTML() | |
with gr.Tab("News"): | |
news_output = gr.Markdown() | |
with gr.Tab("Multi-Ticker Comparison"): | |
with gr.Row(): | |
multi_ticker_input = gr.Textbox(label="Enter Ticker Symbols (space separated)", placeholder="e.g. AAPL MSFT GOOG", value="AAPL MSFT GOOG") | |
comparison_period = gr.Dropdown( | |
choices=["1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"], | |
value="1y", | |
label="Comparison Period" | |
) | |
compare_button = gr.Button("Compare") | |
comparison_status = gr.Markdown() | |
comparison_plot = gr.Plot() | |
with gr.Tab("Market Status"): | |
market_status_button = gr.Button("Get Market Status") | |
market_status_output = gr.Markdown() | |
with gr.Tab("Stock Search"): | |
with gr.Row(): | |
search_input = gr.Textbox(label="Search Term", placeholder="Enter company name or ticker") | |
max_results_slider = gr.Slider(minimum=5, maximum=30, value=10, step=5, label="Max Results") | |
search_button = gr.Button("Search") | |
search_results = gr.Markdown() | |
# Event handlers | |
ticker_submit.click( | |
fn=get_ticker_info, | |
inputs=[ticker_input], | |
outputs=[ticker_info_output] | |
) | |
ticker_submit.click( | |
fn=get_historical_data, | |
inputs=[ticker_input, period_dropdown, interval_dropdown], | |
outputs=[history_status, history_plot] | |
) | |
ticker_submit.click( | |
fn=get_financial_data, | |
inputs=[ticker_input, statement_dropdown, period_type_dropdown], | |
outputs=[financial_data_output] | |
) | |
ticker_submit.click( | |
fn=get_company_news, | |
inputs=[ticker_input], | |
outputs=[news_output] | |
) | |
compare_button.click( | |
fn=get_multi_ticker_comparison, | |
inputs=[multi_ticker_input, comparison_period], | |
outputs=[comparison_status, comparison_plot] | |
) | |
market_status_button.click( | |
fn=get_market_status, | |
inputs=[], | |
outputs=[market_status_output] | |
) | |
search_button.click( | |
fn=search_stocks, | |
inputs=[search_input, max_results_slider], | |
outputs=[search_results] | |
) | |
# Update statement and interval options based on selections | |
def update_interval_choices(period): | |
if period in ["1d", "5d"]: | |
return gr.Dropdown.update(choices=["1m", "2m", "5m", "15m", "30m", "60m", "90m", "1h"], value="1m") | |
else: | |
return gr.Dropdown.update(choices=["1d", "5d", "1wk", "1mo", "3mo"], value="1d") | |
period_dropdown.change( | |
fn=update_interval_choices, | |
inputs=[period_dropdown], | |
outputs=[interval_dropdown] | |
) | |
if __name__ == "__main__": | |
app.launch() |