yfinance-ui / app.py
airabbitX's picture
Create app.py
bccac95 verified
raw
history blame
27.1 kB
import gradio as gr
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import datetime as dt
import json
from io import StringIO
# Helper functions for data processing
def format_large_number(num):
"""Format large numbers to K, M, B, T"""
if num is None or pd.isna(num):
return "N/A"
if isinstance(num, str):
return num
if abs(num) >= 1_000_000_000_000:
return f"{num / 1_000_000_000_000:.2f}T"
elif abs(num) >= 1_000_000_000:
return f"{num / 1_000_000_000:.2f}B"
elif abs(num) >= 1_000_000:
return f"{num / 1_000_000:.2f}M"
elif abs(num) >= 1_000:
return f"{num / 1_000:.2f}K"
else:
return f"{num:.2f}"
def get_ticker_info(ticker_symbol):
"""Get basic information about a ticker"""
try:
ticker = yf.Ticker(ticker_symbol)
info = ticker.info
# Create a more readable format
important_info = {
"Name": info.get("shortName", "N/A"),
"Sector": info.get("sector", "N/A"),
"Industry": info.get("industry", "N/A"),
"Country": info.get("country", "N/A"),
"Market Cap": format_large_number(info.get("marketCap", "N/A")),
"Current Price": info.get("currentPrice", info.get("regularMarketPrice", "N/A")),
"52 Week High": info.get("fiftyTwoWeekHigh", "N/A"),
"52 Week Low": info.get("fiftyTwoWeekLow", "N/A"),
"Website": info.get("website", "N/A"),
"Business Summary": info.get("longBusinessSummary", "N/A")
}
# Convert to formatted string
info_str = ""
for key, value in important_info.items():
info_str += f"**{key}**: {value}\n\n"
return info_str
except Exception as e:
return f"Error retrieving ticker info: {str(e)}"
def get_historical_data(ticker_symbol, period, interval):
"""Get historical price data and create a plotly chart"""
try:
ticker = yf.Ticker(ticker_symbol)
history = ticker.history(period=period, interval=interval)
if history.empty:
return "No historical data available for this ticker", None
# Create Plotly figure
fig = go.Figure()
fig.add_trace(go.Candlestick(
x=history.index,
open=history['Open'],
high=history['High'],
low=history['Low'],
close=history['Close'],
name='Price'
))
# Add volume as bar chart
fig.add_trace(go.Bar(
x=history.index,
y=history['Volume'],
name='Volume',
yaxis='y2',
marker_color='rgba(0, 100, 80, 0.4)'
))
# Layout with secondary y-axis
fig.update_layout(
title=f'{ticker_symbol} Price History',
yaxis_title='Price',
yaxis2=dict(
title='Volume',
overlaying='y',
side='right',
showgrid=False
),
xaxis_rangeslider_visible=False,
height=500
)
return f"Successfully retrieved historical data for {ticker_symbol}", fig
except Exception as e:
return f"Error retrieving historical data: {str(e)}", None
def get_financial_data(ticker_symbol, statement_type, period_type):
"""Get financial statements data"""
try:
ticker = yf.Ticker(ticker_symbol)
if statement_type == "Income Statement":
if period_type == "Annual":
data = ticker.income_stmt
else: # Quarterly
data = ticker.quarterly_income_stmt
elif statement_type == "Balance Sheet":
if period_type == "Annual":
data = ticker.balance_sheet
else: # Quarterly
data = ticker.quarterly_balance_sheet
elif statement_type == "Cash Flow":
if period_type == "Annual":
data = ticker.cashflow
else: # Quarterly
data = ticker.quarterly_cashflow
if data is None or data.empty:
return f"No {statement_type} data available for {ticker_symbol}"
# Format the DataFrame for display
data = data.fillna("N/A")
# Format date columns to be more readable
data.columns = [col.strftime('%Y-%m-%d') if hasattr(col, 'strftime') else str(col) for col in data.columns]
# HTML representation will be more readable in the UI
return data.to_html(classes="table table-striped")
except Exception as e:
return f"Error retrieving financial data: {str(e)}"
def get_company_news(ticker_symbol):
"""Get latest news for the company"""
try:
ticker = yf.Ticker(ticker_symbol)
news = ticker.news
if not news:
return "No recent news available for this ticker"
# Format news items
formatted_news = ""
for i, item in enumerate(news[:5]): # Show top 5 news items
# Extract from nested content structure if present
news_item = item.get('content', item)
# Get title
title = news_item.get('title', 'No title')
# Get publisher
publisher = "Unknown publisher"
if 'provider' in news_item and isinstance(news_item['provider'], dict):
publisher = news_item['provider'].get('displayName', 'Unknown publisher')
# Get link
link = "#"
if 'clickThroughUrl' in news_item and isinstance(news_item['clickThroughUrl'], dict):
link = news_item['clickThroughUrl'].get('url', '#')
elif 'canonicalUrl' in news_item and isinstance(news_item['canonicalUrl'], dict):
link = news_item['canonicalUrl'].get('url', '#')
# Get date
publish_date = 'Unknown date'
if 'pubDate' in news_item:
publish_date = news_item['pubDate']
formatted_news += f"### {i+1}. {title}\n\n"
formatted_news += f"**Source**: {publisher} | **Date**: {publish_date}\n\n"
formatted_news += f"**Link**: [Read full article]({link})\n\n"
# Add description if available
if 'description' in news_item:
description = news_item['description']
# Limit description length and strip HTML tags
if len(description) > 200:
description = description[:200] + "..."
formatted_news += f"{description}\n\n"
formatted_news += "---\n\n"
return formatted_news
except Exception as e:
return f"Error retrieving news: {str(e)}"
def get_analyst_recommendations(ticker_symbol):
"""Get analyst recommendations"""
try:
ticker = yf.Ticker(ticker_symbol)
recommendations = ticker.recommendations
if recommendations is None or recommendations.empty:
return "No analyst recommendations available for this ticker"
# Create a figure for visualization
fig = plt.figure(figsize=(10, 6))
# Count occurrences of each recommendation
rec_counts = recommendations['To Grade'].value_counts()
# Create a pie chart
plt.pie(rec_counts, labels=rec_counts.index, autopct='%1.1f%%',
shadow=True, startangle=90, colors=['#ff9999','#66b3ff','#99ff99','#ffcc99','#c2c2f0'])
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle
plt.title(f'Analyst Recommendations for {ticker_symbol}')
return f"Found {len(recommendations)} analyst recommendations for {ticker_symbol}", fig
except Exception as e:
return f"Error retrieving analyst recommendations: {str(e)}", None
def get_options_data(ticker_symbol, expiration_date=None):
"""Get options chain data for the ticker"""
try:
ticker = yf.Ticker(ticker_symbol)
# Get available expiration dates
expirations = ticker.options
if not expirations:
return "No options data available for this ticker", None
# If no expiration date is provided or the provided one is invalid, use the first available
if expiration_date is None or expiration_date not in expirations:
expiration_date = expirations[0]
# Get options chain for the selected expiration date
options = ticker.option_chain(expiration_date)
calls = options.calls
puts = options.puts
# Prepare data for visualization
strike_prices = sorted(list(set(calls['strike'].tolist() + puts['strike'].tolist())))
call_volumes = []
put_volumes = []
for strike in strike_prices:
call_vol = calls[calls['strike'] == strike]['volume'].sum()
put_vol = puts[puts['strike'] == strike]['volume'].sum()
call_volumes.append(call_vol)
put_volumes.append(put_vol)
# Create figure for visualization
fig = plt.figure(figsize=(12, 6))
# Plot the data
plt.bar(np.array(strike_prices) - 0.2, call_volumes, width=0.4, label='Calls', color='green', alpha=0.6)
plt.bar(np.array(strike_prices) + 0.2, put_volumes, width=0.4, label='Puts', color='red', alpha=0.6)
plt.xlabel('Strike Price')
plt.ylabel('Volume')
plt.title(f'Options Volume for {ticker_symbol} (Expiry: {expiration_date})')
plt.legend()
plt.grid(True, alpha=0.3)
# Format for readability
current_price = ticker.info.get('regularMarketPrice', ticker.info.get('currentPrice', None))
if current_price:
plt.axvline(x=current_price, color='blue', linestyle='--', label=f'Current Price: {current_price}')
plt.legend()
# Create summary table data
summary = f"""
### Options Summary for {ticker_symbol} (Expiry: {expiration_date})
**Available Expiration Dates:** {', '.join(expirations)}
#### Calls Summary:
- Count: {len(calls)}
- Total Volume: {calls['volume'].sum():,}
- Average Implied Volatility: {calls['impliedVolatility'].mean():.2%}
#### Puts Summary:
- Count: {len(puts)}
- Total Volume: {puts['volume'].sum():,}
- Average Implied Volatility: {puts['impliedVolatility'].mean():.2%}
"""
return summary, fig
except Exception as e:
return f"Error retrieving options data: {str(e)}", None
def get_institutional_holders(ticker_symbol):
"""Get institutional holders of the stock"""
try:
ticker = yf.Ticker(ticker_symbol)
holders = ticker.institutional_holders
if holders is None or holders.empty:
return "No institutional holders data available for this ticker", None
# Create figure for visualization
fig = plt.figure(figsize=(12, 6))
# Sort by percentage held
holders = holders.sort_values(by='% Out', ascending=False)
# Take top 10 holders for visualization
top_holders = holders.head(10)
# Plot the data
plt.barh(top_holders['Holder'], top_holders['% Out'] * 100)
plt.xlabel('Percentage Held (%)')
plt.ylabel('Institution')
plt.title(f'Top Institutional Holders of {ticker_symbol}')
plt.grid(True, alpha=0.3)
# Format x-axis as percentage
plt.gca().xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: f'{x:.1f}%'))
# Format the DataFrame for display
holders_html = holders.to_html(classes="table table-striped")
return holders_html, fig
except Exception as e:
return f"Error retrieving institutional holders: {str(e)}", None
def get_sector_industry_info(ticker_symbol):
"""Get sector and industry information for the ticker"""
try:
ticker = yf.Ticker(ticker_symbol)
info = ticker.info
sector_key = info.get('sectorKey')
industry_key = info.get('industryKey')
if not sector_key or not industry_key:
return "Sector or industry information not available for this ticker"
try:
# Get sector information
sector = yf.Sector(sector_key)
sector_info = f"""
### Sector Information
**Name:** {sector.name}
**Key:** {sector.key}
**Symbol:** {sector.symbol}
#### Overview
{sector.overview}
#### Top Companies in {sector.name} Sector
"""
for company in sector.top_companies[:5]: # Show top 5 companies
sector_info += f"- {company.get('name', 'N/A')} ({company.get('symbol', 'N/A')})\n"
# Get industry information
industry = yf.Industry(industry_key)
industry_info = f"""
### Industry Information
**Name:** {industry.name}
**Key:** {industry.key}
**Sector:** {industry.sector_name}
#### Top Performing Companies in {industry.name}
"""
for company in industry.top_performing_companies[:5]: # Show top 5 companies
industry_info += f"- {company.get('name', 'N/A')} ({company.get('symbol', 'N/A')})\n"
return sector_info + industry_info
except Exception as e:
return f"Error retrieving sector/industry details: {str(e)}"
except Exception as e:
return f"Error retrieving sector/industry information: {str(e)}"
def search_stocks(query, max_results=10):
"""Search for stocks using the YF Search API"""
try:
# First try with the standard approach
search_results = yf.Search(query, max_results=max_results)
quotes = search_results.quotes
if not quotes:
return "No search results found"
# Format the results
formatted_results = "### Search Results\n\n"
for quote in quotes:
symbol = quote.get('symbol', 'N/A')
name = quote.get('shortname', quote.get('longname', 'N/A'))
exchange = quote.get('exchange', 'N/A')
quote_type = quote.get('quoteType', 'N/A').capitalize()
formatted_results += f"**{symbol}** - {name}\n"
formatted_results += f"Exchange: {exchange} | Type: {quote_type}\n\n"
return formatted_results
except AttributeError as e:
if "has no attribute 'update'" in str(e):
# Alternative: Use the Ticker directly for basic information
try:
# If search fails, try to get info directly for the symbol
if len(query.strip()) <= 5: # Likely a symbol
ticker = yf.Ticker(query.strip())
info = ticker.info
formatted_results = "### Direct Ticker Results\n\n"
formatted_results += f"**{query.strip()}** - {info.get('shortName', 'N/A')}\n"
formatted_results += f"Exchange: {info.get('exchange', 'N/A')} | "
formatted_results += f"Type: {info.get('quoteType', 'N/A').capitalize()}\n\n"
return formatted_results
else:
return f"Search functionality unavailable due to version compatibility issue. If you know the exact ticker symbol, try entering it in the Single Ticker Analysis tab."
except:
return f"Search functionality unavailable due to version compatibility issue. If you know the exact ticker symbol, try entering it in the Single Ticker Analysis tab."
else:
return f"Error searching stocks: {str(e)}"
except Exception as e:
return f"Error searching stocks: {str(e)}"
def get_multi_ticker_comparison(ticker_symbols, period="1y"):
"""Compare multiple tickers in a single chart"""
try:
if not ticker_symbols:
return "Please enter at least one ticker symbol", None
# Split input string into list of ticker symbols
tickers = [t.strip() for t in ticker_symbols.split() if t.strip()]
if not tickers:
return "Please enter at least one ticker symbol", None
# Download data for all tickers
data = yf.download(tickers, period=period, group_by='ticker')
if data.empty:
return "No data available for the provided tickers", None
# For a single ticker, the structure is different
if len(tickers) == 1:
ticker = tickers[0]
price_data = data['Close']
price_data.name = ticker
price_data = pd.DataFrame(price_data)
else:
# Extract closing prices for each ticker
price_data = pd.DataFrame()
for ticker in tickers:
try:
if (ticker, 'Close') in data.columns:
price_data[ticker] = data[ticker]['Close']
except:
continue
if price_data.empty:
return "Could not retrieve closing price data for the provided tickers", None
# Normalize the data to start at 100 for fair comparison
normalized_data = price_data.copy()
for col in normalized_data.columns:
normalized_data[col] = normalized_data[col] / normalized_data[col].iloc[0] * 100
# Create figure for visualization
fig = plt.figure(figsize=(12, 6))
for col in normalized_data.columns:
plt.plot(normalized_data.index, normalized_data[col], label=col)
plt.xlabel('Date')
plt.ylabel('Normalized Price (Base = 100)')
plt.title(f'Comparative Performance ({period})')
plt.legend()
plt.grid(True, alpha=0.3)
# Calculate performance metrics
performance = {}
for ticker in price_data.columns:
start_price = price_data[ticker].iloc[0]
end_price = price_data[ticker].iloc[-1]
pct_change = (end_price - start_price) / start_price * 100
performance[ticker] = pct_change
# Create a summary of the performance
summary = "### Performance Summary\n\n"
for ticker, pct in sorted(performance.items(), key=lambda x: x[1], reverse=True):
summary += f"**{ticker}**: {pct:.2f}%\n\n"
return summary, fig
except Exception as e:
return f"Error comparing tickers: {str(e)}", None
def get_market_status():
"""Get current market status and summary"""
try:
# Get US market status
us_market = yf.Market("US")
status = us_market.status
if not status:
return "Unable to retrieve market status"
# Format the response
market_info = "### Market Status\n\n"
market_state = status.get('marketState', 'Unknown')
trading_status = "Open" if market_state == "REGULAR" else "Closed"
market_info += f"**US Market Status:** {trading_status} ({market_state})\n\n"
# Get summary for different markets
markets = ["US", "EUROPE", "ASIA", "CRYPTOCURRENCIES"]
for market_id in markets:
try:
market = yf.Market(market_id)
summary = market.summary
if summary is None:
market_info += f"### {market_id} Market Summary\n\nNo data available\n\n---\n\n"
continue
market_info += f"### {market_id} Market Summary\n\n"
# Make sure we handle the summary data correctly, regardless of its type
summary_items = []
if isinstance(summary, list):
summary_items = summary[:5] # Get first 5 items
elif hasattr(summary, '__getitem__'):
try:
summary_items = summary[:5] # Try to get first 5 items
except:
# If slicing fails, try to convert to list first
try:
summary_items = list(summary)[:5]
except:
summary_items = []
# Display market indices
if not summary_items:
market_info += "No summary data available\n\n"
else:
for item in summary_items:
if not isinstance(item, dict):
continue
symbol = item.get('symbol', 'N/A')
name = item.get('shortName', item.get('longName', 'N/A'))
price = item.get('regularMarketPrice', 'N/A')
change = item.get('regularMarketChangePercent', 0)
# Format change with color indicator
change_text = f"{change:.2f}%" if isinstance(change, (int, float)) else change
if isinstance(change, (int, float)):
if change > 0:
change_text = f"🟢 +{change_text}"
elif change < 0:
change_text = f"🔴 {change_text}"
market_info += f"**{name} ({symbol}):** {price} ({change_text})\n\n"
market_info += "---\n\n"
except Exception as e:
market_info += f"### {market_id} Market Summary\n\nError retrieving {market_id} market summary: {str(e)}\n\n---\n\n"
return market_info
except Exception as e:
return f"Error retrieving market status: {str(e)}"
# Gradio UI components
with gr.Blocks(title="YFinance Explorer") as app:
gr.Markdown("# YFinance Explorer\nA comprehensive tool to test all features of the yfinance library")
with gr.Tab("Single Ticker Analysis"):
with gr.Row():
ticker_input = gr.Textbox(label="Enter Ticker Symbol", placeholder="e.g. AAPL, MSFT, GOOG", value="AAPL")
ticker_submit = gr.Button("Analyze")
with gr.Tabs():
with gr.Tab("Overview"):
ticker_info_output = gr.Markdown()
with gr.Tab("Price History"):
with gr.Row():
period_dropdown = gr.Dropdown(
choices=["1d", "5d", "1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"],
value="1y",
label="Period"
)
interval_dropdown = gr.Dropdown(
choices=["1m", "2m", "5m", "15m", "30m", "60m", "90m", "1h", "1d", "5d", "1wk", "1mo", "3mo"],
value="1d",
label="Interval"
)
history_status = gr.Markdown()
history_plot = gr.Plot()
with gr.Tab("Financials"):
with gr.Row():
statement_dropdown = gr.Dropdown(
choices=["Income Statement", "Balance Sheet", "Cash Flow"],
value="Income Statement",
label="Financial Statement"
)
period_type_dropdown = gr.Dropdown(
choices=["Annual", "Quarterly"],
value="Annual",
label="Period Type"
)
financial_data_output = gr.HTML()
with gr.Tab("News"):
news_output = gr.Markdown()
with gr.Tab("Multi-Ticker Comparison"):
with gr.Row():
multi_ticker_input = gr.Textbox(label="Enter Ticker Symbols (space separated)", placeholder="e.g. AAPL MSFT GOOG", value="AAPL MSFT GOOG")
comparison_period = gr.Dropdown(
choices=["1mo", "3mo", "6mo", "1y", "2y", "5y", "10y", "ytd", "max"],
value="1y",
label="Comparison Period"
)
compare_button = gr.Button("Compare")
comparison_status = gr.Markdown()
comparison_plot = gr.Plot()
with gr.Tab("Market Status"):
market_status_button = gr.Button("Get Market Status")
market_status_output = gr.Markdown()
with gr.Tab("Stock Search"):
with gr.Row():
search_input = gr.Textbox(label="Search Term", placeholder="Enter company name or ticker")
max_results_slider = gr.Slider(minimum=5, maximum=30, value=10, step=5, label="Max Results")
search_button = gr.Button("Search")
search_results = gr.Markdown()
# Event handlers
ticker_submit.click(
fn=get_ticker_info,
inputs=[ticker_input],
outputs=[ticker_info_output]
)
ticker_submit.click(
fn=get_historical_data,
inputs=[ticker_input, period_dropdown, interval_dropdown],
outputs=[history_status, history_plot]
)
ticker_submit.click(
fn=get_financial_data,
inputs=[ticker_input, statement_dropdown, period_type_dropdown],
outputs=[financial_data_output]
)
ticker_submit.click(
fn=get_company_news,
inputs=[ticker_input],
outputs=[news_output]
)
compare_button.click(
fn=get_multi_ticker_comparison,
inputs=[multi_ticker_input, comparison_period],
outputs=[comparison_status, comparison_plot]
)
market_status_button.click(
fn=get_market_status,
inputs=[],
outputs=[market_status_output]
)
search_button.click(
fn=search_stocks,
inputs=[search_input, max_results_slider],
outputs=[search_results]
)
# Update statement and interval options based on selections
def update_interval_choices(period):
if period in ["1d", "5d"]:
return gr.Dropdown.update(choices=["1m", "2m", "5m", "15m", "30m", "60m", "90m", "1h"], value="1m")
else:
return gr.Dropdown.update(choices=["1d", "5d", "1wk", "1mo", "3mo"], value="1d")
period_dropdown.change(
fn=update_interval_choices,
inputs=[period_dropdown],
outputs=[interval_dropdown]
)
if __name__ == "__main__":
app.launch()