SLM-RAG-Arena / utils /models.py
Haoguang Cai
add UI and data processing
8a142a6
raw
history blame
2.35 kB
# --- Dummy Model Summaries ---
# Define functions that simulate model summary generation
dummy_models = {
"Model Alpha": lambda context, question, answerable: f"Alpha Summary: Based on the context for '{question[:20]}...', it appears the question is {'answerable' if answerable else 'unanswerable'}.",
"Model Beta": lambda context, question, answerable: f"Beta Summary: Regarding '{question[:20]}...', the provided documents {'allow' if answerable else 'do not allow'} for a conclusive answer based on the text.",
"Model Gamma": lambda context, question, answerable: f"Gamma Summary: For the question '{question[:20]}...', I {'can' if answerable else 'cannot'} provide a specific answer from the given text snippets.",
"Model Delta (Refusal Specialist)": lambda context, question, answerable: f"Delta Summary: The context for '{question[:20]}...' is {'sufficient' if answerable else 'insufficient'} to formulate a direct response. Therefore, I must refuse."
}
# List of model names for easy access
model_names = list(dummy_models.keys())
def generate_summaries(example, model_a_name, model_b_name):
"""
Generates summaries for the given example using the assigned models.
"""
# Create a plain text version of the contexts for the models
context_text = ""
if "contexts" in example and example["contexts"]:
context_parts = []
for ctx in example["contexts"]:
if isinstance(ctx, dict) and "content" in ctx:
context_parts.append(ctx["content"])
context_text = "\n---\n".join(context_parts)
else:
# Fallback to full contexts if highlighted contexts are not available
context_parts = []
if "full_contexts" in example:
for ctx in example["full_contexts"]:
if isinstance(ctx, dict) and "content" in ctx:
context_parts.append(ctx["content"])
context_text = "\n---\n".join(context_parts)
# Pass 'Answerable' status to models (they might use it)
answerable = example.get("Answerable", True)
question = example.get("question", "")
# Call the dummy model functions
summary_a = dummy_models[model_a_name](context_text, question, answerable)
summary_b = dummy_models[model_b_name](context_text, question, answerable)
return summary_a, summary_b