Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import random | |
import pandas as pd | |
import os | |
import threading | |
import time | |
import numpy as np | |
from utils.data_loader import get_random_example | |
from utils.models import generate_summaries, model_names | |
from utils.ui_helpers import toggle_context_display, update_feedback, get_context_html | |
from utils.leaderboard import load_leaderboard_data, submit_vote_with_elo, generate_leaderboard_html | |
from utils.vote_logger import save_vote_details | |
from utils.shared import generation_interrupt | |
feedback_options = { | |
"left": ["Model A: More complete", "Model A: More accurate", "Model A: More relevant", "Model A: Better written", "Model A: Better refusal (if applicable)"], | |
"right": ["Model B: More complete", "Model B: More accurate", "Model B: More relevant", "Model B: Better written", "Model B: Better refusal (if applicable)"], | |
"tie": ["Model A: Complete", "Model A: Accurate", "Model A: Relevant", "Model A: Well written", "Model A: Correct refusal (if applicable)", | |
"Model B: Complete", "Model B: Accurate", "Model B: Relevant", "Model B: Well written", "Model B: Corrent refusal (if applicable)"], | |
"neither": ["Model A: Incomplete", "Model A: Hallucinate", "Model A: Irrelevant", "Model A: Incorrect refusal (if applicable)", | |
"Model B: Incomplete", "Model B: Hallucinate", "Model B: Irrelevant", "Model B: Incorrect refusal (if applicable)"] | |
} | |
def weighted_sample_without_replacement(population, weights, k=2): | |
""" | |
Performs a weighted random sampling without replacement. | |
Args: | |
population: The list of items to sample from | |
weights: The weight for each item | |
k: Number of items to sample | |
Returns: | |
A list of k sampled items | |
""" | |
if len(population) <= k: | |
return population | |
# Convert weights to numpy array for efficient operations | |
weights = np.array(weights) | |
# Create a copy of the population and weights | |
remaining_population = population.copy() | |
remaining_weights = weights.copy() | |
selected = [] | |
for _ in range(k): | |
# Normalize weights so they sum to 1 | |
normalized_weights = remaining_weights / remaining_weights.sum() | |
# Randomly select one item based on weights | |
selected_idx = np.random.choice(len(remaining_population), p=normalized_weights) | |
# Add the selected item to our result | |
selected.append(remaining_population[selected_idx]) | |
# Remove the selected item from the pool | |
remaining_population.pop(selected_idx) | |
remaining_weights = np.delete(remaining_weights, selected_idx) | |
return selected | |
def load_context(set_interrupt=False): | |
if set_interrupt: | |
generation_interrupt.set() | |
time.sleep(0.2) | |
generation_interrupt.clear() | |
example = get_random_example() | |
context_desc = example.get('processed_context_desc', '') | |
if context_desc: | |
context_desc = f"<div class='context-topic'><span class='topic-label'>The question and context are about:</span> {context_desc}</div>" | |
show_full = False | |
context_html = get_context_html(example, show_full=show_full) | |
return [ | |
example, | |
gr.update(value=example['question']), | |
gr.update(value=context_desc, visible=bool(context_desc)), | |
gr.update(value=context_html), | |
gr.update(value="Show Full Context", elem_classes=["context-toggle-button"]), | |
show_full | |
] | |
def load_leaderboard(): | |
results = load_leaderboard_data() | |
leaderboard_html = generate_leaderboard_html(results) | |
return leaderboard_html | |
def generate_model_summaries(example): | |
result = { | |
"model_a": "", | |
"model_b": "", | |
"summary_a": "", | |
"summary_b": "", | |
"completed": False | |
} | |
if generation_interrupt.is_set(): | |
return result | |
try: | |
# Get current leaderboard data to determine model usage counts | |
leaderboard_data = load_leaderboard_data() | |
# Calculate weights using inverse weighting | |
# Weight = K / (games_played + C) | |
K = 100 # Scaling factor | |
C = 5 # Smoothing constant | |
weights = [] | |
model_list = [] | |
for model in model_names: | |
# Get games played for the model, default to 0 if not found | |
games_played = leaderboard_data["games_played"].get(model, 0) | |
# Calculate weight using inverse formula | |
weight = K / (games_played + C) | |
weights.append(weight) | |
model_list.append(model) | |
# Select two models using weighted sampling without replacement | |
selected_models = weighted_sample_without_replacement(model_list, weights, k=2) | |
m_a_name, m_b_name = selected_models | |
result["model_a"] = m_a_name | |
result["model_b"] = m_b_name | |
s_a, s_b = generate_summaries(example, m_a_name, m_b_name) | |
if not generation_interrupt.is_set(): | |
result["summary_a"] = s_a | |
result["summary_b"] = s_b | |
result["completed"] = bool(s_a and s_b) | |
except Exception as e: | |
print(f"Error in generation: {e}") | |
return result | |
def process_generation_result(result): | |
if not result["completed"] or not result["summary_a"] or not result["summary_b"]: | |
return [ | |
result.get("model_a", ""), | |
result.get("model_b", ""), | |
result.get("summary_a", ""), | |
result.get("summary_b", ""), | |
None, [], False, load_leaderboard_data(), | |
gr.update(value=result.get("summary_a", "Generation was interrupted or failed.")), | |
gr.update(value=result.get("summary_b", "Generation was interrupted or failed.")), | |
gr.update(interactive=False, elem_classes=["vote-button"]), | |
gr.update(interactive=False, elem_classes=["vote-button"]), | |
gr.update(interactive=False, elem_classes=["vote-button"]), | |
gr.update(interactive=False, elem_classes=["vote-button", "vote-button-neither"]), | |
gr.update(choices=[], value=[], interactive=False, visible=False), | |
gr.update(visible=False), | |
gr.update(interactive=False, visible=True), | |
gr.update(visible=False), | |
gr.update(interactive=True), | |
gr.update(elem_classes=[]) | |
] | |
buttons_interactive = bool(result["summary_a"] and result["summary_b"]) | |
agg_results = load_leaderboard_data() | |
return [ | |
result["model_a"], result["model_b"], | |
result["summary_a"], result["summary_b"], | |
None, [], False, agg_results, | |
gr.update(value=result["summary_a"]), | |
gr.update(value=result["summary_b"]), | |
gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]), | |
gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]), | |
gr.update(interactive=buttons_interactive, elem_classes=["vote-button"]), | |
gr.update(interactive=buttons_interactive, elem_classes=["vote-button", "vote-button-neither"]), | |
gr.update(choices=[], value=[], interactive=False, visible=False), | |
gr.update(visible=False), | |
gr.update(interactive=False, visible=True), | |
gr.update(visible=False), | |
gr.update(interactive=True), | |
gr.update(elem_classes=[]) | |
] | |
def process_example(example): | |
result = generate_model_summaries(example) | |
return process_generation_result(result) | |
def select_vote_improved(winner_choice): | |
feedback_choices = feedback_options.get(winner_choice, []) | |
btn_a_classes = ["vote-button"] | |
btn_b_classes = ["vote-button"] | |
btn_tie_classes = ["vote-button"] | |
btn_neither_classes = ["vote-button", "vote-button-neither"] | |
if winner_choice == 'left': | |
btn_a_classes.append("selected") | |
elif winner_choice == 'right': | |
btn_b_classes.append("selected") | |
elif winner_choice == 'tie': | |
btn_tie_classes.append("selected") | |
elif winner_choice == 'neither': | |
btn_neither_classes.append("selected") | |
return [ | |
winner_choice, | |
gr.update(choices=feedback_choices, value=[], interactive=True, visible=True), | |
gr.update(visible=True), | |
gr.update(interactive=True), | |
gr.update(elem_classes=btn_a_classes), | |
gr.update(elem_classes=btn_b_classes), | |
gr.update(elem_classes=btn_tie_classes), | |
gr.update(elem_classes=btn_neither_classes) | |
] | |
def handle_vote_submission(example, m_a, m_b, winner, feedback, summary_a, summary_b, current_results): | |
if winner is None: | |
print("Warning: Submit called without a winner selected.") | |
return {} | |
save_vote_details(example, m_a, m_b, winner, feedback, summary_a, summary_b) | |
return submit_vote_with_elo(m_a, m_b, winner, feedback, current_results) | |
def show_loading_state(): | |
"""Show loading state while fetching new content and reset UI elements""" | |
return [ | |
gr.update(value="Loading new question and summaries...", interactive=False), | |
gr.update(value="Loading new question and summaries...", interactive=False), | |
gr.update(interactive=False, elem_classes=["vote-button"]), # Reset styling | |
gr.update(interactive=False, elem_classes=["vote-button"]), | |
gr.update(interactive=False, elem_classes=["vote-button"]), | |
gr.update(interactive=False, elem_classes=["vote-button", "vote-button-neither"]), | |
gr.update(visible=False), # feedback_section | |
gr.update(interactive=False), # submit_button | |
gr.update(visible=False), # results_reveal_area | |
gr.update(interactive=False), # random_question_btn | |
None # Reset selected_winner | |
] | |
def handle_new_example_click(): | |
return load_context(set_interrupt=True)[0] | |
def update_ui_for_new_context(example): | |
context_desc = example.get('processed_context_desc', '') | |
if context_desc: | |
context_desc = f"<div class='context-topic'><span class='topic-label'>The question and context are about:</span> {context_desc}</div>" | |
return [ | |
gr.update(value=example['question']), | |
gr.update(value=context_desc, visible=bool(context_desc)), | |
gr.update(value=get_context_html(example, False)), | |
gr.update(value="Show Full Context", elem_classes=["context-toggle-button"]), | |
False | |
] | |
def cleanup_on_disconnect(): | |
print(f"Browser disconnected. Cleaning up resources...") | |
generation_interrupt.set() | |
with gr.Blocks(theme=gr.themes.Default( | |
primary_hue=gr.themes.colors.orange, | |
secondary_hue=gr.themes.colors.slate | |
)) as demo: | |
css_path = os.path.join(os.getcwd(), 'static', 'styles.css') | |
with open(css_path, 'r') as f: | |
css_content = f.read() | |
gr.HTML(f"<style>{css_content}</style>") | |
unload_js = """ | |
<script> | |
window.addEventListener('beforeunload', function(e) { | |
navigator.sendBeacon('/cleanup?session_id=' + window.gradioClientState.session_hash); | |
}); | |
</script> | |
""" | |
gr.HTML(unload_js) | |
current_example = gr.State({}) | |
model_a_name = gr.State("") | |
model_b_name = gr.State("") | |
summary_a_text = gr.State("") | |
summary_b_text = gr.State("") | |
selected_winner = gr.State(None) | |
feedback_list = gr.State([]) | |
show_results_state = gr.State(False) | |
results_agg = gr.State(load_leaderboard_data()) | |
show_full_context = gr.State(False) | |
with gr.Tabs() as tabs: | |
with gr.TabItem("Arena", id="arena-tab"): | |
gr.Markdown("# Small Language Model RAG Summarization/Generation Arena") | |
gr.Markdown(""" | |
🏟️ This arena evaluates SLMs on document QA tasks with retrieved context. They should provide **grounded, comprehensive** answers or **properly decline** when information is insufficient. | |
📝 Insturction: 1. **Review the query and context**. 2. **Compare answers** generated by two different models. 3. **Vote for the better response** or select 'Tie/Neither' if appropriate. | |
""") | |
gr.HTML("<hr>") | |
with gr.Column(elem_id="main-interface-area") as main_interface_area: | |
with gr.Row(elem_id="query-title-row"): | |
gr.Markdown("### 💬 Query - Question About Document Content", elem_classes="section-heading") | |
with gr.Row(elem_id="query-container"): | |
with gr.Row(elem_classes="query-box-row"): | |
query_display = gr.Markdown(value="Loading question...", elem_classes="query-text", elem_id="query-section") | |
random_question_btn = gr.Button("🔄 Try a New Question", elem_classes="query-button") | |
context_description = gr.Markdown("", elem_classes="context-description") | |
gr.HTML("<hr>") | |
with gr.Row(elem_id="context-header-row"): | |
gr.Markdown("### 📋 Context - Retrieved Content from the Document", elem_classes="context-title") | |
context_toggle_btn = gr.Button("Show Full Context", elem_classes=["context-toggle-button"]) | |
context_display = gr.HTML(value="Loading context...", label="Context Chunks") | |
gr.Markdown("---") | |
gr.Markdown("### 🔍 Compare Models - Are these Grounded, Complete Answers or Correct Rejections?", elem_classes="section-heading") | |
with gr.Row(elem_id="summary-containers"): | |
with gr.Column(scale=1): | |
with gr.Group(elem_classes=["summary-card", "summary-card-a"]): | |
summary_a_display = gr.Textbox( | |
label="Model A", | |
lines=10, | |
interactive=False, | |
show_copy_button=True, | |
autoscroll=False, | |
elem_id="summary-a-display" | |
) | |
with gr.Column(scale=1): | |
with gr.Group(elem_classes=["summary-card", "summary-card-b"]): | |
summary_b_display = gr.Textbox( | |
label="Model B", | |
lines=10, | |
interactive=False, | |
show_copy_button=True, | |
autoscroll=False, | |
elem_id="summary-b-display" | |
) | |
gr.HTML("<hr>") | |
gr.Markdown("### 🏅 Cast Your Vote", elem_classes="section-heading") | |
with gr.Row(): | |
vote_button_a = gr.Button("⬅️ Summary A is Better", elem_classes=["vote-button"], interactive=False) | |
vote_button_tie = gr.Button("🤝 Tie / Equally Good", elem_classes=["vote-button"], interactive=False) | |
vote_button_b = gr.Button("➡️ Summary B is Better", elem_classes=["vote-button"], interactive=False) | |
vote_button_neither = gr.Button("❌ Neither is Good", elem_classes=["vote-button", "vote-button-neither"], interactive=False) | |
with gr.Group(elem_classes=["feedback-section"], visible=False) as feedback_section: | |
feedback_checkboxes = gr.CheckboxGroup(label="Feedback (optional)", choices=[], interactive=False) | |
submit_button = gr.Button("Submit Your Vote", variant="primary", interactive=False, elem_id="submit-button") | |
with gr.Column(visible=False) as results_reveal_area: | |
gr.Markdown("---") | |
gr.Markdown("### ✅ Vote Submitted!", elem_classes="section-heading") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### Model A was:", elem_classes="section-heading") | |
model_a_reveal = gr.Markdown("", elem_classes="model-reveal model-a-reveal") | |
with gr.Column(scale=1): | |
gr.Markdown("### Model B was:", elem_classes="section-heading") | |
model_b_reveal = gr.Markdown("", elem_classes="model-reveal model-b-reveal") | |
gr.HTML("<hr>") | |
with gr.Row(elem_classes=["control-buttons"]): | |
try_another_btn = gr.Button("🔄 Try Another Question", elem_id="try-another-btn") | |
with gr.TabItem("Leaderboard", id="leaderboard-tab"): | |
gr.Markdown("# RAG SLM Summarizer/Generator Leaderboard", elem_classes="orange-title") | |
gr.Markdown("View performance statistics for all models ranked by Elo rating.") | |
with gr.Group(elem_id="leaderboard-info"): | |
gr.Markdown("""### About Elo Ratings | |
The Elo rating system provides a more accurate ranking than simple win rates: | |
- All models start at 1500 points | |
- Points are exchanged after each comparison based on the expected outcome | |
- Beating a stronger model earns more points than beating a weaker one | |
- The ± value shows the statistical confidence interval (95%) | |
""") | |
results_table_display = gr.HTML(label="Model Performance") | |
context_toggle_btn.click( | |
fn=toggle_context_display, | |
inputs=[current_example, show_full_context], | |
outputs=[show_full_context, context_display, context_toggle_btn] | |
) | |
demo.load( | |
fn=load_context, | |
inputs=[], | |
outputs=[current_example, query_display, context_description, context_display, | |
context_toggle_btn, show_full_context] | |
).then( | |
fn=process_example, | |
inputs=[current_example], | |
outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text, | |
selected_winner, feedback_list, show_results_state, results_agg, | |
summary_a_display, summary_b_display, vote_button_a, vote_button_b, | |
vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section, | |
submit_button, results_reveal_area, random_question_btn, main_interface_area] | |
) | |
demo.load( | |
fn=load_leaderboard, | |
inputs=[], | |
outputs=[results_table_display] | |
) | |
for btn in [random_question_btn, try_another_btn]: | |
btn.click( | |
fn=show_loading_state, | |
inputs=[], | |
outputs=[ | |
summary_a_display, summary_b_display, | |
vote_button_a, vote_button_b, vote_button_tie, vote_button_neither, | |
feedback_section, submit_button, results_reveal_area, random_question_btn, | |
selected_winner # Add selected_winner to reset vote state | |
] | |
).then( | |
fn=handle_new_example_click, | |
inputs=[], | |
outputs=[current_example] | |
).then( | |
fn=update_ui_for_new_context, | |
inputs=[current_example], | |
outputs=[query_display, context_description, context_display, | |
context_toggle_btn, show_full_context] | |
).then( | |
fn=process_example, | |
inputs=[current_example], | |
outputs=[model_a_name, model_b_name, summary_a_text, summary_b_text, | |
selected_winner, feedback_list, show_results_state, results_agg, | |
summary_a_display, summary_b_display, vote_button_a, vote_button_b, | |
vote_button_tie, vote_button_neither, feedback_checkboxes, feedback_section, | |
submit_button, results_reveal_area, random_question_btn, main_interface_area] | |
) | |
for btn, choice in zip( | |
[vote_button_a, vote_button_b, vote_button_tie, vote_button_neither], | |
['left', 'right', 'tie', 'neither'] | |
): | |
btn.click( | |
fn=lambda choice=choice: select_vote_improved(choice), | |
inputs=None, | |
outputs=[selected_winner, feedback_checkboxes, feedback_section, submit_button, | |
vote_button_a, vote_button_b, vote_button_tie, vote_button_neither] | |
) | |
feedback_checkboxes.change( | |
fn=update_feedback, | |
inputs=[feedback_checkboxes], | |
outputs=[feedback_list] | |
) | |
submit_button.click( | |
fn=handle_vote_submission, | |
inputs=[current_example, model_a_name, model_b_name, selected_winner, feedback_list, summary_a_text, summary_b_text, results_agg], | |
outputs=[show_results_state, results_agg, vote_button_a, vote_button_b, | |
vote_button_tie, vote_button_neither, feedback_checkboxes, | |
feedback_section, submit_button, results_reveal_area, | |
random_question_btn, results_table_display, main_interface_area, | |
context_toggle_btn, model_a_reveal, model_b_reveal] | |
) | |
tabs.select( | |
fn=load_leaderboard, | |
inputs=[], | |
outputs=[results_table_display], | |
api_name="refresh_leaderboard" | |
) | |
demo.unload(cleanup_on_disconnect) | |
if __name__ == "__main__": | |
demo.launch(debug=True) |