Spaces:
Sleeping
Sleeping
Delete inference.py
Browse files- inference.py +0 -146
inference.py
DELETED
|
@@ -1,146 +0,0 @@
|
|
| 1 |
-
import time
|
| 2 |
-
import cv2
|
| 3 |
-
import numpy as np
|
| 4 |
-
import onnxruntime
|
| 5 |
-
|
| 6 |
-
from utils import draw_detections
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
class YOLOv8:
|
| 10 |
-
def __init__(self, path):
|
| 11 |
-
|
| 12 |
-
# Initialize model
|
| 13 |
-
self.initialize_model(path)
|
| 14 |
-
|
| 15 |
-
def __call__(self, image):
|
| 16 |
-
return self.detect_objects(image)
|
| 17 |
-
|
| 18 |
-
def initialize_model(self, path):
|
| 19 |
-
self.session = onnxruntime.InferenceSession(
|
| 20 |
-
path, providers=onnxruntime.get_available_providers()
|
| 21 |
-
)
|
| 22 |
-
# Get model info
|
| 23 |
-
self.get_input_details()
|
| 24 |
-
self.get_output_details()
|
| 25 |
-
|
| 26 |
-
def detect_objects(self, image, conf_threshold=0.3):
|
| 27 |
-
input_tensor = self.prepare_input(image)
|
| 28 |
-
|
| 29 |
-
# Perform inference on the image
|
| 30 |
-
new_image = self.inference(image, input_tensor, conf_threshold)
|
| 31 |
-
|
| 32 |
-
return new_image
|
| 33 |
-
|
| 34 |
-
def prepare_input(self, image):
|
| 35 |
-
self.img_height, self.img_width = image.shape[:2]
|
| 36 |
-
|
| 37 |
-
input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 38 |
-
|
| 39 |
-
# Resize input image
|
| 40 |
-
input_img = cv2.resize(input_img, (self.input_width, self.input_height))
|
| 41 |
-
|
| 42 |
-
# Scale input pixel values to 0 to 1
|
| 43 |
-
input_img = input_img / 255.0
|
| 44 |
-
input_img = input_img.transpose(2, 0, 1)
|
| 45 |
-
input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)
|
| 46 |
-
|
| 47 |
-
return input_tensor
|
| 48 |
-
|
| 49 |
-
def inference(self, image, input_tensor, conf_threshold=0.3):
|
| 50 |
-
start = time.perf_counter()
|
| 51 |
-
outputs = self.session.run(
|
| 52 |
-
self.output_names, {self.input_names[0]: input_tensor}
|
| 53 |
-
)
|
| 54 |
-
|
| 55 |
-
print(f"Inference time: {(time.perf_counter() - start)*1000:.2f} ms")
|
| 56 |
-
boxes, scores, class_ids, = self.process_output(outputs, conf_threshold)
|
| 57 |
-
return self.draw_detections(image, boxes, scores, class_ids)
|
| 58 |
-
|
| 59 |
-
def process_output(self, output, conf_threshold=0.3):
|
| 60 |
-
predictions = np.squeeze(output[0])
|
| 61 |
-
|
| 62 |
-
# Filter out object confidence scores below threshold
|
| 63 |
-
scores = predictions[:, 4]
|
| 64 |
-
predictions = predictions[scores > conf_threshold, :]
|
| 65 |
-
scores = scores[scores > conf_threshold]
|
| 66 |
-
|
| 67 |
-
if len(scores) == 0:
|
| 68 |
-
return [], [], []
|
| 69 |
-
|
| 70 |
-
# Get the class with the highest confidence
|
| 71 |
-
class_ids = predictions[:, 5].astype(int)
|
| 72 |
-
|
| 73 |
-
# Get bounding boxes for each object
|
| 74 |
-
boxes = self.extract_boxes(predictions)
|
| 75 |
-
|
| 76 |
-
return boxes, scores, class_ids
|
| 77 |
-
|
| 78 |
-
def extract_boxes(self, predictions):
|
| 79 |
-
# Extract boxes from predictions
|
| 80 |
-
boxes = predictions[:, :4]
|
| 81 |
-
|
| 82 |
-
# Scale boxes to original image dimensions
|
| 83 |
-
boxes = self.rescale_boxes(boxes)
|
| 84 |
-
|
| 85 |
-
# Convert boxes to xyxy format
|
| 86 |
-
#boxes = xywh2xyxy(boxes)
|
| 87 |
-
|
| 88 |
-
return boxes
|
| 89 |
-
|
| 90 |
-
def rescale_boxes(self, boxes):
|
| 91 |
-
# Rescale boxes to original image dimensions
|
| 92 |
-
input_shape = np.array(
|
| 93 |
-
[self.input_width, self.input_height, self.input_width, self.input_height]
|
| 94 |
-
)
|
| 95 |
-
boxes = np.divide(boxes, input_shape, dtype=np.float32)
|
| 96 |
-
boxes *= np.array(
|
| 97 |
-
[self.img_width, self.img_height, self.img_width, self.img_height]
|
| 98 |
-
)
|
| 99 |
-
return boxes
|
| 100 |
-
|
| 101 |
-
def draw_detections(self, image, boxes, scores, class_ids, draw_scores=True, mask_alpha=0.4):
|
| 102 |
-
return draw_detections(
|
| 103 |
-
image, boxes, scores, class_ids, mask_alpha
|
| 104 |
-
)
|
| 105 |
-
|
| 106 |
-
def get_input_details(self):
|
| 107 |
-
model_inputs = self.session.get_inputs()
|
| 108 |
-
self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
|
| 109 |
-
|
| 110 |
-
self.input_shape = model_inputs[0].shape
|
| 111 |
-
self.input_height = self.input_shape[2]
|
| 112 |
-
self.input_width = self.input_shape[3]
|
| 113 |
-
|
| 114 |
-
def get_output_details(self):
|
| 115 |
-
model_outputs = self.session.get_outputs()
|
| 116 |
-
self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
if __name__ == "__main__":
|
| 120 |
-
import requests
|
| 121 |
-
import tempfile
|
| 122 |
-
from huggingface_hub import hf_hub_download
|
| 123 |
-
|
| 124 |
-
model_file = hf_hub_download(
|
| 125 |
-
repo_id="onnx-community/yolov10s", filename="onnx/model.onnx"
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
yolov8_detector = YOLOv10(model_file)
|
| 129 |
-
|
| 130 |
-
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as f:
|
| 131 |
-
f.write(
|
| 132 |
-
requests.get(
|
| 133 |
-
"https://live.staticflickr.com/13/19041780_d6fd803de0_3k.jpg"
|
| 134 |
-
).content
|
| 135 |
-
)
|
| 136 |
-
f.seek(0)
|
| 137 |
-
img = cv2.imread(f.name)
|
| 138 |
-
|
| 139 |
-
# # Detect Objects
|
| 140 |
-
combined_image = yolov8_detector.detect_objects(img)
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
# Draw detections
|
| 144 |
-
cv2.namedWindow("Output", cv2.WINDOW_NORMAL)
|
| 145 |
-
cv2.imshow("Output", combined_image)
|
| 146 |
-
cv2.waitKey(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|